A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chaos-induced intensification of wave scattering. | LitMetric

Chaos-induced intensification of wave scattering.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Applied Physics, Russian Academy of Science, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia.

Published: August 2005

Sound-wave propagation in a strongly idealized model of the deep-water acoustic waveguide with a periodic range dependence is considered. It is investigated how the phenomenon of ray and wave chaos affects the sound scattering at a strong mesoscale inhomogeneity of the refractive index caused by the synoptic eddy. Methods derived in the theory of dynamical and quantum chaos are applied. When studying the properties of wave chaos we decompose the wave field into a sum of Floquet modes analogous to quantum states with fixed quasi-energies. It is demonstrated numerically that the "stable islands" from the phase portrait of the ray system reveal themselves in the coarse-grained Wigner functions of individual Floquet modes. A perturbation theory has been derived which gives an insight into the role of the mode-medium resonance in the formation of Floquet modes. It is shown that the presence of a weak internal-wave-induced perturbation giving rise to ray and wave chaos strongly increases the sensitivity of the monochromatic wave field to an appearance of the eddy. To investigate the sensitivity of the transient wave field we have considered variations of the ray travel times--arrival times of sound pulses coming to the receiver through individual ray paths--caused by the eddy. It turns out that even under conditions of ray chaos these variations are relatively predictable. This result suggests that the influence of chaotic-ray motion may be partially suppressed by using pulse signals. However, the relative predictability of travel time variations caused by a large-scale inhomogeneity is not a general property of the ray chaos. This statement is illustrated numerically by considering an inhomogeneity in the form of a perfectly reflecting bar.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.72.026206DOI Listing

Publication Analysis

Top Keywords

wave chaos
12
wave field
12
floquet modes
12
ray wave
8
ray chaos
8
wave
7
ray
7
chaos
6
chaos-induced intensification
4
intensification wave
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!