L-glutamate and phorbol ester stimulate the release of secretory amyloid precursor protein from rat cortical synaptosomes.

Acta Biol Hung

Department of Neuromorphology, Institute of Experimental Morphology and Anthropology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 25, 1113 Sofia, Bulgaria.

Published: October 2005

Treatment of rat cortical synaptosomes with micromolar concentrations of L-glutamate stimulated the release of the secreted form of amyloid precursor protein in a concentration-dependent, however biphasic manner as assayed by semiquantitative Western blot analysis. The secreted amyloid precursor protein released from synaptosomes into the incubation medium was highest in the presence of 500 microM L-glutamate (about 64% over the level assayed in the incubation medium in the absence of any drug). In contrast, direct stimulation of protein kinase C by phorbol-12-myristate-13-acetate resulted in a concentration-independent increase in secretory amyloid precursor protein release by about 100% already detectable at a concentration of 0.1 microM but with no significant change at higher concentrations up to 10 microM. The presented data show that there is a constitutive release of secretory amyloid precursor protein from synaptosomes and suggest that (i) processing of amyloid precursor protein at the synaptic level is controlled by L-glutamate presumably via activation of protein kinase C, and (ii) isolated cortical synaptosomes represent a useful experimental approach to selectively study amyloid precursor protein metabolism at the synaptic level.

Download full-text PDF

Source
http://dx.doi.org/10.1556/ABiol.56.2005.3-4.1DOI Listing

Publication Analysis

Top Keywords

amyloid precursor
28
precursor protein
28
secretory amyloid
12
cortical synaptosomes
12
protein
9
release secretory
8
rat cortical
8
incubation medium
8
protein kinase
8
synaptic level
8

Similar Publications

Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.

Methods: In Aβ-treated mice, FENM was infused at 0.

View Article and Find Full Text PDF

Purpose: This study sought to analyze the effect of allele mutations and gene functions specific to glaucoma susceptibility among Africans.

Methods: Potentially relevant studies were retrieved from major bibliographic databases (PubMed, Scopus, and Web of Science). Data were extracted and study-specific estimates were meta-analyzed using various models to obtain pooled results.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease associated with the development of dementia. The hallmarks of AD neuropathology are accumulations of amyloid peptide (Aβ) and neurofibrillary tangles (NFTs). Aβ is derived from the processing of APP (amyloid beta precursor protein) by BACE1 (beta-secretase 1) and γ-secretase through an amyloidogenic pathway.

View Article and Find Full Text PDF

No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!