A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. | LitMetric

AI Article Synopsis

  • Current proteomics produce large amounts of data quickly, but the methods for analyzing this data haven't kept pace.
  • There is a lack of comprehensive reviews that compare which peptide and protein identification methods are the most effective or appropriate for different tasks.
  • The article reviews existing algorithms for various identification methods and emphasizes the necessity for standardized reporting on algorithm performance, proposing initial ideas for dataset formats and content.

Article Abstract

Current proteomics experiments can generate vast quantities of data very quickly, but this has not been matched by data analysis capabilities. Although there have been a number of recent reviews covering various aspects of peptide and protein identification methods using MS, comparisons of which methods are either the most appropriate for, or the most effective at, their proposed tasks are not readily available. As the need for high-throughput, automated peptide and protein identification systems increases, the creators of such pipelines need to be able to choose algorithms that are going to perform well both in terms of accuracy and computational efficiency. This article therefore provides a review of the currently available core algorithms for PMF, database searching using MS/MS, sequence tag searches and de novo sequencing. We also assess the relative performances of a number of these algorithms. As there is limited reporting of such information in the literature, we conclude that there is a need for the adoption of a system of standardised reporting on the performance of new peptide and protein identification algorithms, based upon freely available datasets. We go on to present our initial suggestions for the format and content of these datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200402091DOI Listing

Publication Analysis

Top Keywords

peptide protein
12
protein identification
12
identification algorithms
8
high-throughput automated
8
algorithms
5
protein
4
protein peptide
4
identification
4
peptide identification
4
algorithms high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!