Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by an extremely low success rate. To address whether placental dysfunction in SCNT causes fetal loss during pregnancy, we have used a global proteomics approach using 2-DE and MS to analyze the differential protein patterns of three placentae from the afterbirth of cases of postnatal death, derived from SCNT of Korean Native cattle, and three normal placentae obtained from the afterbirth of fetuses derived from artificial insemination. Proteins within a pI range of 4.0-7.0 and 6.0-9.0 were analyzed separately by 2-DE in triplicate. A total of approximately 2000 spots were detected in placental 2-DE gels stained with CBB. In the comparison of normal and SCNT samples, 60 spots were identified as differentially expressed proteins, of which 33 spots were up-regulated proteins in SCNT placentae, while 27 spots were down-regulated proteins. Most of the proteins identified in this analysis appeared to be related with protein repair or protection, cytoskeleton, signal transduction, immune system, metabolism, extracellular matrix and remodeling, transcription regulation, cell structure or differentiation and ion transport. One of up-regulated proteins in SCNT was TIMP-2 protein known to be related to extracellular matrix and remodeling during pregnancy. Western blot analysis showed an increased level of TIMP-2 in SCNT placenta compared to normal. Our results revealed composite profiles of key proteins involved in abnormal placenta derived from SCNT, and suggested expression abnormality of these genes in SCNT placenta, resulting in fetal losses following SCNT.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200401297DOI Listing

Publication Analysis

Top Keywords

scnt
10
placenta derived
8
somatic cell
8
cell nuclear
8
nuclear transfer
8
placentae afterbirth
8
derived scnt
8
up-regulated proteins
8
proteins scnt
8
extracellular matrix
8

Similar Publications

Effect of extracellular vesicles derived from oviductal and uterine fluid on the development of porcine preimplantation embryos.

Theriogenology

December 2024

College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.

View Article and Find Full Text PDF

METTL3 improves the development of somatic cell nuclear transfer embryos through AURKB and H3S10ph in goats.

Int J Biol Macromol

December 2024

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored.

View Article and Find Full Text PDF

After in vitro maturation (IVM) of porcine germinal vesicle (GV) oocytes, those that matured to the metaphase II (MII) stage were selected for further culture over a period of 24-48 h. Subsequently, these oocytes were either parthenogenetically activated or used for somatic cell nuclear transfer (SCNT) to evaluate their in vitro developmental competence. Parthenogenetically activated MII oocytes developed to the blastocyst stage after 42 h of continuous culture, whereas SCNT oocytes reached the blastocyst stage within 30 h of culture.

View Article and Find Full Text PDF

Future of reproductive biotechnologies in water buffalo in Southeast Asian countries.

Theriogenology

February 2025

Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. Electronic address:

The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.

View Article and Find Full Text PDF

First Indication of Solar ^{8}B Neutrinos through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T.

Phys Rev Lett

November 2024

School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.

Article Synopsis
  • The PandaX-4T detector at the China Jinping Underground Laboratory detects solar ^{8}B neutrinos through coherent scattering with liquid xenon nuclei, focusing on specific energy thresholds for data selection.
  • The experiment analyzed data from both commissioning and initial science runs, observing a total of 3 paired events and 332 unpaired ionization signals, with background events estimated at 2.8±0.5 and 251±32, respectively.
  • The results indicate a solar ^{8}B neutrino flux of (8.4±3.1)×10^{6}  cm^{-2} s^{-1}, aligning with standard solar model predictions, and providing the first signs of solar neutr
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!