The syntheses and structures of complexes of the fifth period elements indium and antimony, and the sixth period element bismuth with the soft scorpionate ligand, hydrotris(methimazolyl)borate (Tm(Me)) are reported. A considerable variety of structural motifs were obtained by reaction of the main-group element halide and NaTm(Me). The indium(III) complexes took the form [In(kappa(3)-Tm(Me))(2)](+). This motif could not, however, be isolated for antimony(III), the dominant product being [Sb(kappa(3)-Tm(Me))(kappa(1)-Tm(Me))X] (X = Br, I). An iodo-bridged species [Sb(kappa(3)-Tm(Me))I(mu(2)-I)](2), analogous to a previously reported bismuth complex, was also isolated. Reaction of antimony(III) acetate with NaTm(Me) results in a remarkable species in which three different ligand binding modes are observed. In each antimony complex the influence of the nonbonded electron pair is observed in the structure. Bismuth halides form complexes analogous to those of antimony, with directional lone pairs, but in addition, reaction of Bi(NO(3))(3) with NaTm(Me) results in a complex with a regular S(6) coordination sphere and a nonstereochemically active lone pair. Comparisons are drawn with known Tm(Me) complexes of As, Sn, and Bi in which the stereochemical influence of the lone pairs is negligible and with Tm(Me) complexes of Te and Bi in which the lone pairs are stereochemically active. This study highlights the ability of Tm(Me) to coordinate in a variety of modes as dictated by the metal centre with no adverse effects on the stability of the complexes formed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200500677DOI Listing

Publication Analysis

Top Keywords

lone pairs
16
main-group element
8
soft scorpionate
8
scorpionate ligand
8
stereochemically active
8
active lone
8
tmme complexes
8
complexes
7
lone
5
lower main-group
4

Similar Publications

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Insight into the Origin of Second Harmonic Generation and Rational Design in the Metal Halide Borates.

Inorg Chem

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Metal halide borates are promising candidates for high-performance nonlinear optical (NLO) applications, yet the origins of their second harmonic generation (SHG) properties remain unclear. Using atom response theory combined with density functional theory calculations, this study investigates why halogen substitution leads to distinctly different SHG responses in halide monoborates (PbBOX) versus halide pentaborates (PbBOX). We find that the SHG origins vary between these two families due to differences in the strength of the Pb-X interactions.

View Article and Find Full Text PDF

Where are the lone pairs? QC and QCT.

Acta Crystallogr C Struct Chem

February 2025

Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico.

The article by Guzmán-Hernández & Jancik [(2024). Acta Cryst. C80, 766-774] is an excellent example of how QC-QCT (quantum crystallography-quantum chemical topology) methodology can extract structural information from a crystal.

View Article and Find Full Text PDF

Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.

View Article and Find Full Text PDF

Aromatic organometallic complexes, such as ferrocene and the "inverse sandwich complex" [NaCp], are stabilized via charge-transfer (C-T) interactions and cation-π interactions (i.e., charge-induced dipole and charge-quadrupole interactions).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!