For the lymphohematopoietic system, maturation-dependent alterations in DNA repair function have been demonstrated. Because little information is available on the regulatory mechanisms underlying these changes, we have correlated the expression of DNA damage response genes and the functional repair capacity of cells at distinct stages of human hematopoietic differentiation. Comparing fractions of mature (CD34-), progenitor (CD34+ 38+), and stem cells (CD34+ 38-) isolated from umbilical cord blood, we observed: 1) stringently regulated differentiation-dependent shifts in both the cellular processing of DNA lesions and the expression profiles of related genes and 2) considerable interindividual variability of DNA repair at transcriptional and functional levels. The respective repair phenotype was found to be constitutively regulated and not dominated by adaptive response to acute DNA damage. During blood cell development, the removal of DNA adducts, the resealing of repair gaps, the resistance to DNA-reactive drugs clearly increased in stem or mature compared with progenitor cells of the same individual. On the other hand, the vast majority of differentially expressed repair genes was consistently upregulated in the progenitor fraction. A positive correlation of repair function and transcript levels was found for a small number of genes such as RAD23 or ATM, which may serve as key regulators for DNA damage processing via specific pathways. These data indicate that the organism might aim to protect the small number of valuable slow dividing stem cells by extensive DNA repair, whereas fast-proliferating progenitor cells, once damaged, are rather eliminated by apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2005-0227 | DOI Listing |
Melanoma Manag
December 2024
Supportive Care Dep, Institut Curie, Paris, France.
Metastatic uveal melanoma (UM) patients often initially present with limited symptoms despite a poor prognosis, complicating communication with patients and caregivers. Early Together (NCT04728113) is a randomized Phase III trial that integrates early palliative care through systematic joint visits involving the palliative care team and the medical oncologist, compared with standard oncological care, in 162 metastatic UM patients beginning systemic treatment. This collaboration aims to enhance patient functioning, improve quality of life and facilitate coping mechanisms.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.
View Article and Find Full Text PDFIntegration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage.
View Article and Find Full Text PDFIn eukaryotes, mismatch repair begins with M ut S h omolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA- stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important , ATP is not required to nick DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!