Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351072 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00757.2005 | DOI Listing |
Biophys J
January 2025
Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:
Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Augusta University, Augusta, GA, USA.
Background: Hypertension is a leading risk factor for the development of Alzheimer's disease and Alzheimer's disease-related dementia (AD/ADRD), which is closely linked with cerebral vascular inflammation and dysfunction. We previously found that high-salt-treated Dahl Salt-Sensitive (SS) rats displayed blood-brain barrier (BBB) leakage, astrocyte activation, neurodegeneration, and cognitive impairments. CD14 functions in the Toll-like receptor 4 (TLR4) complex to initiate proinflammatory signaling events in response to LPS.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Impaired interstitial fluid drainage in the brain is indicated by the presence of perivascular β-amyloid (Aβ) deposits and is attributed to alterations in contractility and relaxation of vascular smooth muscle cells (SMCs). The brain microvasculature in Alzheimer disease (AD) accumulates amyloid-forming amylin secreted from the pancreas. Here, we tested the hypothesis that cerebrovascular amylin deposits perturbs cerebral Aβ efflux by impairing cerebral vasodilation.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.
Sci Rep
January 2025
Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!