We are developing a computer-aided detection system to assist radiologists in the detection of lung nodules on thoracic computed tomography (CT) images. The purpose of this study was to improve the false-positive (FP) reduction stage of our algorithm by developing features that extract three-dimensional (3D) shape information from volumes of interest identified in the prescreening stage. We formulated 3D gradient field descriptors, and derived 19 gradient field features from their statistics. Six ellipsoid features were obtained by computing the lengths and the length ratios of the principal axes of an ellipsoid fitted to a segmented object. Both the gradient field features and the ellipsoid features were designed to distinguish spherical objects such as lung nodules from elongated objects such as vessels. The FP reduction performance in this new 25-dimensional feature space was compared to the performance in a 19-dimensional space that consisted of features extracted using previously developed methods. The performance in the 44-dimensional combined feature space was also evaluated. Linear discriminant analysis with stepwise feature selection was used for classification. The parameters used for feature selection were optimized using the simplex algorithm. Training and testing were performed using a leave-one-patient-out scheme. The FP reduction performances in different feature spaces were evaluated by using the area Az under the receiver operating characteristic curve and the number of FPs per CT section at a given sensitivity as accuracy measures. Our data set consisted of 82 CT scans (3551 axial sections) from 56 patients with section thickness ranging from 1.0 to 2.5 mm. Our prescreening algorithm detected 111 of the 116 solid nodules (nodule size: 3.0-30.6 mm) marked by experienced thoracic radiologists. The test Az values were 0.95 +/- 0.01, 0.88 +/- 0.02, and 0.94 +/- 0.01 in the new, previous, and combined feature spaces, respectively. The number of FPs per section at 80% sensitivity in these three feature spaces were 0.37, 1.61, and 0.34, respectively. The improvement in the test Az with the 25 new features was statistically significant (p<0.0001) compared to that with the previous 19 features alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800987PMC
http://dx.doi.org/10.1118/1.1944667DOI Listing

Publication Analysis

Top Keywords

gradient field
16
lung nodules
12
feature spaces
12
computer-aided detection
8
detection lung
8
field features
8
ellipsoid features
8
feature space
8
combined feature
8
feature selection
8

Similar Publications

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

This research introduces an innovative approach to optimal control for a class of linear systems with input saturation. It leverages the synergy of Takagi-Sugeno (T-S) fuzzy models and reinforcement learning (RL) techniques. To enhance interpretability and analytical accessibility, our approach applies T-S models to approximate the value function and generate optimal control laws while incorporating prior knowledge.

View Article and Find Full Text PDF

Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

View Article and Find Full Text PDF

Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

Microbiol Res

January 2025

Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.

View Article and Find Full Text PDF

Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for prediction and classification problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!