Effect of cyclodextrin and transformer oil amendments on the chemical extractability of aged [14C]polychlorinated biphenyl and [14C]polycyclic aromatic hydrocarbon residues in soil.

Environ Toxicol Chem

Department of Environmental Science, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom.

Published: September 2005

AI Article Synopsis

Article Abstract

Sequestration of hydrophobic organic contaminants (HOCs) in soils limits chemical and biological availability. Concerns exist regarding the long-term stability of sequestered contaminants in the environment, and stability needs to be demonstrated if bioavailability considerations are to be adopted into the risk assessment and remediation of contaminated land. The aim of the present study was to test the short-term influence of two organic amendments on the chemical extractability of HOC residues that had been present in soils for more than 12 years. The amendments investigated were cyclodextrin and transformer oil (a light, nonaqueous phase liquid [LNAPL]). The contaminants investigated were fluoranthene and benzo[a]pyrene in one soil and the polychlorinated biphenyls (PCBs) 28 and 52 in a second soil. The addition of cyclodextrin to the soils did not result in a significant increase in chemical extractability of the residues after a 36-d contact time. The addition of transformer oil resulted in an increase in chemical extractability of the PCBs after a 14-d soil-LNAPL contact time and a further increase after a 36-d contact time. The present study demonstrates that the chemical availability of aged HOCs in soil may be influenced by the presence of other chemicals and has implications for the long-term management of contaminated land.

Download full-text PDF

Source
http://dx.doi.org/10.1897/04-652r.1DOI Listing

Publication Analysis

Top Keywords

chemical extractability
16
transformer oil
12
contact time
12
cyclodextrin transformer
8
amendments chemical
8
contaminated land
8
increase chemical
8
36-d contact
8
chemical
6
oil amendments
4

Similar Publications

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

A novel method was established using a restricted access material combined with a molecularly imprinted polymer (RAM-MIP) as the sorbent material in solid phase extraction (SPE) for clean-up of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lactone, heptachlor, heptachlor--epoxide, and heptachlor--epoxide in pork and gas chromatography (GC) for determination. The RAM-MIP was prepared by precipitation polymerization by using endosulfan as the template, methacrylic acid (MAA) as the monomer, glycidyl methacrylate (GMA) as the pro-hydrophilic co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, azobisisobutyronitrile (AIBN) as the initiator, and toluene as the porogen. Ultraviolet spectroscopy (UV) and H-nuclear magnetic resonance (H-NMR) analysis verified that MAA interacted specifically with endosulfan in a ratio of 1 : 1 in the pre-polymerization solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!