Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae.

Curr Genet

Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA.

Published: October 2005

Yeast cells lacking the SGS1 DNA helicase and the MUS81 structure-specific endonuclease display a synthetic lethality that is suppressed by loss of the RAD51 recombinase. This epistatic interaction suggests that the primary function of SGS1 or MUS81, or both genes, is downstream of RAD51. To identify RAD51-independent functions of SGS1 and MUS81, a synthetic-lethal screen was performed on the sgs1 mus81 rad51triple mutant. We found that mutation of RNH202, which encodes a subunit of the hetero-trimeric RNase H2, generates a profound synthetic-sickness in this background. RNase H2 is thought to play a non-essential role in Okazaki fragment maturation. Cells lacking RNH202 showed synthetic growth defects when combined with either mus81 or sgs1 alone. But, whereas the loss of RAD51 had little effect on rnh202 sgs1 double mutants, it strongly inhibited the growth of rnh202 mus81 cells. These data indicate that the primary function of SGS1, but not MUS81, is downstream of RAD51. SGS1 must have some RAD51-independent function, however, since the growth of rnh202 mus81 rad51cells was further compromised by the loss of SGS1. Consistent with these results, we show that rnh202 cells display a sensitivity to DNA-damaging agents that is exacerbated in the absence of RAD51 or MUS81. These data support a model in which defects in lagging-strand replication are repaired by the Mus81 endonuclease or through a pathway dependent on Rad51 and Sgs1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828632PMC
http://dx.doi.org/10.1007/s00294-005-0014-5DOI Listing

Publication Analysis

Top Keywords

sgs1 mus81
20
mus81
11
sgs1
10
lagging-strand replication
8
cells lacking
8
loss rad51
8
primary function
8
function sgs1
8
downstream rad51
8
growth rnh202
8

Similar Publications

Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery.

View Article and Find Full Text PDF

Smc5/6 is essential for genome structural integrity by yet unknown mechanisms. Here we find that Smc5/6 co-localizes with the DNA crossed-strand processing complex Sgs1-Top3-Rmi1 (STR) at genomic regions known as natural pausing sites (NPSs) where it facilitates Top3 retention. Individual depletions of STR subunits and Smc5/6 cause similar accumulation of joint molecules (JMs) composed of reversed forks, double Holliday Junctions and hemicatenanes, indicative of Smc5/6 regulating Sgs1 and Top3 DNA processing activities.

View Article and Find Full Text PDF

Joint molecules (JMs) are intermediates of homologous recombination (HR). JMs rejoin sister or homolog chromosomes and must be removed timely to allow segregation in anaphase. Current models pinpoint Holliday junctions (HJs) as a central JM.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Mus81-Mms4 complex is a highly conserved DNA structure-specific endonuclease that plays essential roles in the processing of recombination intermediates that arise during the repair of stalled replication forks and double-stranded breaks. To identify novel factors functioning conjointly with Mus81-Mms4, we performed a biochemical screen and found that Crp1, a cruciform DNA-recognizing protein that specifically binds to DNA four-way junction structures, could stimulate the Mus81-Mms4 endonuclease. The specific protein interaction between Mus81-Mms4 and Crp1 was responsible for the stimulation observed.

View Article and Find Full Text PDF

The Bloom's helicase ortholog, Sgs1, orchestrates the formation and disengagement of recombination intermediates to enable controlled crossing-over during meiotic and mitotic DNA repair. Whether its enzymatic activity is temporally regulated to implement formation of noncrossovers prior to the activation of crossover-nucleases is unknown. Here, we show that, akin to the Mus81-Mms4, Yen1, and MutLγ-Exo1 nucleases, Sgs1 helicase function is under cell-cycle control through the actions of CDK and Cdc5 kinases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!