The cysteine biosynthesis pathway differs between plants and the yeast Saccharomyces cerevisiae. The yeast MET25 gene encoded to O-acetylhomoserine sulfhydrylase (AHS) catalyzed the reaction that form homocysteine, which later can be converted into cystiene. In vitro studies show that this enzyme possesses also the activity of O-acetyl(thiol)lyase (OASTL) that catalyzes synthesis of cysteine in plants. In this study, we generated transgenic tobacco plants expressing the yeast MET25 gene under the control of a constitutive promoter and targeted the yeast protein to the cytosol or to the chloroplasts. Both sets of transgenic plants were taller and greener than wild-type plants. Addition of SO(2), the substrate of the yeast enzyme caused a significant elevation of the glutathione content in representative plants from each of the two sets of transgenic plants expressing the yeast gene. Determination of non-protein thiol content indicated up to four-folds higher cysteine and 2.5-fold glutathione levels in these plants. In addition, the leaf discs of the transgenic plants were more tolerant to toxic levels of sulphite, and to paraquat, an herbicide generating active oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-005-0250-5DOI Listing

Publication Analysis

Top Keywords

met25 gene
12
transgenic plants
12
plants
10
transgenic tobacco
8
tobacco plants
8
saccharomyces cerevisiae
8
yeast met25
8
plants expressing
8
expressing yeast
8
sets transgenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!