Biomolecular screening with novel organosilica microspheres.

Chem Commun (Camb)

Nanotechnology and Biomaterials Centre, University of Queensland, St. Lucia, Australia.

Published: October 2005

Organosilica microspheres synthesised via a novel surfactant-free emulsion-based method show applicability towards optical encoding, solid-phase synthesis and high-throughput screening of bound oligonucleotide and peptide sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b509503dDOI Listing

Publication Analysis

Top Keywords

organosilica microspheres
8
biomolecular screening
4
screening novel
4
novel organosilica
4
microspheres organosilica
4
microspheres synthesised
4
synthesised novel
4
novel surfactant-free
4
surfactant-free emulsion-based
4
emulsion-based method
4

Similar Publications

We optimize and characterize the preparation of 3-trimethoxysilyl propyl methacrylate (TPM) colloidal suspensions for three-dimensional confocal microscopy. We revisit a simple synthesis of TPM microspheres by nucleation of droplets from prehydrolyzed TPM oil in a "zero-flow" regime and demonstrate how precise and reproducible control of particle size may be achieved via single-step nucleation with a focus on how the reagents are mixed. We also revamp the conventional dyeing method for TPM particles to achieve uniform transfer of a fluorophore to the organosilica droplets, improving particle identification.

View Article and Find Full Text PDF

Periodic mesoporous organosilicas (PMO) hydrophilic microspheres were synthesized by co-condensation of sulfated polysaccharide from Lilum lancifolium Thunb. bridged silane (SLLTPBS) and polyhedral oligomeric silsesquioxane (POSS) as stationary phase (PMO(SLLTP-POSS)) for per aqueous liquid chromatography (PALC), which would overcome the disadvantages of using a large amount of acetonitrile on the hydrophilic interaction liquid chromatography (HILIC) columns. Average particle size of PMO (SLLTP-POSS) microspheres was 4.

View Article and Find Full Text PDF

Quantification of microRNA (miRNA) has attracted intense interest owing to its importance as a biomarker for the early diagnosis of multiple diseases. However, the inefficient capture of microRNAs from complex biological samples due to the passive diffusion of detection probes essentially restricts their accurate quantification. Herein, we report near-infrared (NIR)-powered Janus nanomotors composed of Au nanorods and periodic mesoporous organo-silica microspheres (AuNR/PMO JNMs) as "swimming probes" to assist a lateral flow test strip (LFTS) for direct, amplification-free, and quantitative miRNA-21 detection in serum and cell medium.

View Article and Find Full Text PDF

In order to solve the problems of using a large proportion of acetonitrile on the hydrophilic interaction liquid chromatography (HILIC) columns that was not environmentally friendly, and the poor acid and base resistance of traditional bonded silica columns, we reported a novel stationary phase of Au nanoparticles (Au NPs) covalently bonded to ionic liquid (ILs) bridged periodic mesoporous organosilicas (PMO) hydrophilic microspheres (PMO-ILs-Au NPs) for per aqueous liquid chromatography (PALC). The PMO hydrophilic microspheres were prepared by condensation of 1,3-bis(trimethoxysilylpropyl)imidazoliumchloride and 1, 2-Bis (triethoxysilyl) ethane and then modified with Au NPs the surface. The obtained materials were characterized by elemental analysis, FT-IR spectra, scanning electron microscope and transmission electron microscopy.

View Article and Find Full Text PDF

Interface Assembly to Magnetic Mesoporous Organosilica Microspheres with Tunable Surface Roughness as Advanced Catalyst Carriers and Adsorbents.

ACS Appl Mater Interfaces

August 2021

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.

Surface roughness endows microspheres with unique and useful features and properties like improved hydrophobicity, enhanced adhesion, improved stability at the oil-water interface, and superior cell uptake properties, thus expanding their applications. Core-shell magnetic mesoporous microspheres combine the advantages of magnetic particles and mesoporous materials and have exhibited wide applications in adsorption, catalysis, separation, and drug delivery. In this study, virus-like rough core-shell-shell-structured magnetic mesoporous organosilica (denoted as RMMOS) microspheres with controllable surface roughness were successfully obtained through electrostatic interaction-directed interface co-assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!