Beta-catenin is essential for pancreatic acinar but not islet development.

Development

Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.

Published: November 2005

Despite our increasingly sophisticated understanding of transcriptional regulation in pancreas development, we know relatively little about the extrinsic signaling pathways involved in this process. We show here that the early pancreatic epithelium exhibits a specific enrichment in unphosphorylated beta-catenin protein, a hallmark of activation of the canonical Wnt signaling pathway. To determine if this pathway is functionally required for normal pancreas development, we have specifically deleted the beta-catenin gene in these cells. Pancreata developing without beta-catenin are hypoplastic, although their early progenitors appear normal and exhibit no premature differentiation or death. Surprisingly, and in marked contrast to its role in the intestine, loss of beta-catenin does not significantly perturb islet endocrine cell mass or function. The major defect of the beta-catenin-deficient pancreas is an almost complete lack of acinar cells, which normally comprise the majority of the organ. beta-Catenin appears to be cell-autonomously required for the specification of acinar cells, rather than for their survival or maintenance, as deletion of beta-catenin specifically in differentiated acinar cells has no effect. Thus, our data are consistent with a crucial role for canonical Wnt signals in acinar lineage specification and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.02063DOI Listing

Publication Analysis

Top Keywords

acinar cells
12
pancreas development
8
canonical wnt
8
beta-catenin
7
acinar
5
beta-catenin essential
4
essential pancreatic
4
pancreatic acinar
4
acinar islet
4
islet development
4

Similar Publications

Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.

Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.

View Article and Find Full Text PDF

Background: Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration.

Material And Methods: Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science.

View Article and Find Full Text PDF

Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.

View Article and Find Full Text PDF

Background: Pancreatic acinar cell carcinoma (PACC) is a rare subtype of pancreatic cancer and the clinicopathological behavior of PACC is not yet fully understood. PACC rarely invades the main pancreatic duct (MPD), which causes intraductal growth. Thus, herein, we have reported a rare case of PACC that invaded the MPD and disseminated to the branches of the pancreatic duct (BDs) without exhibiting any continuity with the main tumor.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!