Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.55-, 1.8-, and 1.7-A resolutions, respectively. The enzyme exists as a dimer, and the subunit consists of three domains; domain I, domain II (NADPH binding domain), and domain III. The core of the NADPH binding domain consists of a seven-stranded predominantly antiparallel beta-sheet fold (which we named SESAS) that is characteristic of the new oxidoreductase family. The enzyme preference for NADPH over NADH is explained by the cofactor binding site architecture. A comparison of the overall structures revealed that the mobile domains I and III change their conformations to produce the catalytic form. This conformational change plays important roles in substrate recognition and the catalytic process. The active site structure of the catalytic form made it possible to identify the catalytic Asp:Ser:His triad and investigate the catalytic mechanism from a stereochemical point of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M507399200 | DOI Listing |
J Biol Chem
December 2005
Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.
View Article and Find Full Text PDFJ Biol Chem
February 2005
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon source. The dpkA gene was cloned and overexpressed in Escherichia coli, and the gene product was characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!