Mutualisms are balanced antagonistic interactions where both species gain a net benefit. Because mutualisms generate resources, they can be exploited by individuals that reap the benefits of the interaction without paying any cost. The presence of such 'cheaters' may have important consequences, yet we are only beginning to understand how cheaters evolve from mutualists and how their evolution may be curtailed within mutualistic lineages. The yucca-yucca moth pollination mutualism is an excellent model in this context as there have been two origins of cheating from within the yucca moth lineage. We used nuclear and mitochondrial DNA markers to examine genetic structure in a moth population where a cheater species is parapatric with a resident pollinator. The results revealed extensive hybridization between pollinators and cheaters. Hybrids were genetically intermediate to parental populations, even though all individuals in this population had a pollinator phenotype. The results suggest that mutualisms can be stable in the face of introgression of cheater genes and that the ability of cheaters to invade a given mutualism may be more limited than previously appreciated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559949PMC
http://dx.doi.org/10.1098/rspb.2005.3201DOI Listing

Publication Analysis

Top Keywords

limiting cheaters
4
cheaters mutualism
4
mutualism evidence
4
evidence hybridization
4
hybridization mutualist
4
mutualist cheater
4
cheater yucca
4
yucca moths
4
moths mutualisms
4
mutualisms balanced
4

Similar Publications

Selection for altruistic defense in structured populations.

Theor Popul Biol

December 2024

Fakultät für Biologie, Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Martinsried, Germany. Electronic address:

We model natural selection for or against an anti-parasite (or anti-predator) defense allele in a host (or prey) population that is structured into many demes. The defense behavior has a fitness cost for the actor compared to non defenders ("cheaters") in the same deme and locally reduces parasite growth rates. Hutzenthaler et al.

View Article and Find Full Text PDF

The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups.

View Article and Find Full Text PDF

Prophages, viral sequences integrated into bacterial genomes, can be beneficial and costly. Despite the risk of prophage activation and subsequent bacterial death, active prophages are present in most bacterial genomes. However, our understanding of the selective forces that maintain prophages in bacterial populations is limited.

View Article and Find Full Text PDF

Cooperation is widespread across life, but its existence can be threatened by exploitation. The rise of obligate social cheaters that are incapable of contributing to a necessary cooperative function can lead to the loss of that function. In the social amoeba , obligate social cheaters cannot form dead stalk cells and in chimeras instead form living spore cells.

View Article and Find Full Text PDF

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!