Chronic alcohol consumption (CAC) provokes intense neurobiological alterations, which lead, notably, to an important abstinence syndrome upon withdrawal with deleterious cognitive consequences. We here examined the effect of activation or inactivation of the sigma(1) receptor during CAC withdrawal on the cognitive abilities of Swiss mice. Animals consumed an alcohol 10%/sucrose 30 g/l solution during 4 months. Control groups consumed only the sucrose vehicle solution. Then, animals experienced a progressive, 16 days long, CAC withdrawal, during which they were administered once daily with saline, igmesine (10 mg/kg i.p.), a sigma(1) receptor agonist, or BD1047 (10 mg/kg i.p.), a sigma(1) antagonist. Mice were then tested using an object exploration task, to evaluate their locomotor and exploratory activities and reactions to object habituation, spatial change or novel object presentation. CAC-treated animals showed augmentation of locomotion, anxiety and object exploration, which impeded correct reaction to object habituation, spatial change or novelty. Treatment with the sigma(1) ligands, ineffective in control groups, resulted in decrease of the hyper-responsiveness and restored habituation. However, correct reactions to spatial change and novelty were only produced by the sigma(1) agonist treatment. Moreover, the sigma(1) receptor hippocampal expression was increased in CAC-treated mice. Treatments with both sigma(1) ligands regulated its expression, but subcellular fractionation experiments revealed that the agonist treatment increased [(3)H](+)-pentazocine binding to sigma(1) sites in the plasma membrane fraction, while the antagonist maintained it only in the microsomal, putatively endoplasmic reticulum, fraction. In conclusion, CAC increased the sigma(1) receptor expression in the hippocampus of mice. Regulation of its expression during withdrawal, notably using a selective agonist, allowed not only to attenuate the CAC-induced hyper-responsiveness, but also to restore correct cognitive abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2005.07.019DOI Listing

Publication Analysis

Top Keywords

sigma1 receptor
20
spatial change
12
sigma1
10
cac withdrawal
8
cognitive abilities
8
control groups
8
mg/kg sigma1
8
object exploration
8
object habituation
8
habituation spatial
8

Similar Publications

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Inflammatory pain represents one of the unmet clinical needs for patients, as conventional therapies cause several side effects. Recently, new targets involved in inflammatory pain modulation have been identified, including the sigma-1 receptor (σ1R). Selective σ1R antagonists have demonstrated analgesic efficacy in acute and chronic inflammatory pain models.

View Article and Find Full Text PDF

Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease.

Int J Mol Sci

December 2024

MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!