Purpose: The selective contribution of neuronal gap junction (GJ) communication via connexin 36 (Cx36) channels to epileptogenesis and to the maintenance and propagation of seizures was investigated in both the primary focus and the mirror focus by using pharmacologic approaches with the 4-aminopyridine in vivo epilepsy model.

Methods: ECoG recording was performed on anesthetized adult rats, in which either quinine, a selective blocker of Cx36, or the broad-spectrum GJ blockers carbenoxolone and octanol were applied locally, before the induction or at already active epileptic foci.

Results: The blockade of Cx36 channels by quinine before the induction of epileptiform activity slightly reduced the epileptogenesis. When quinine was applied after 25-30 repetitions of seizures, a new discharge pattern appeared with frequencies >15 Hz at the initiation of seizures. In spite of the increased number of seizures, the summated ictal activity decreased, because of the significant reduction in the duration of the seizures. The amplitudes of the seizure discharges of all the patterns decreased, with the exception of those with frequencies of 11-12 Hz. The blockade of Cx36 channels and the global blockade of the GJ channels resulted in qualitatively different modifications in ictogenesis.

Conclusions: The blockade of Cx36 channels at the already active epileptic focus has an anticonvulsive effect and modifies the manifestation of the 1- to 18-Hz seizure discharges. Our findings indicate that the GJ communication via Cx36 channels is differently involved in the synchronization of the activities of the networks generating seizure discharges with different frequencies. Additionally, we conclude that both neuronal and glial GJ communication contribute to the manifestation and propagation of seizures in the adult rat neocortex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1528-1167.2005.00254.xDOI Listing

Publication Analysis

Top Keywords

cx36 channels
24
blockade cx36
12
seizure discharges
12
rat neocortex
8
propagation seizures
8
active epileptic
8
cx36
7
channels
7
seizures
6
quinine
4

Similar Publications

Connexin 36 (Cx36) forms interneuronal gap junctions, establishing electrical synapses for rapid synaptic transmission. In disease conditions, inhibiting Cx36 gap junction channels (GJCs) is beneficial, as it prevents abnormal synchronous neuronal firing and apoptotic signal propagation, mitigating seizures and progressive cell death. Here, we present cryo-electron microscopy structures of human Cx36 GJC in complex with known channel inhibitors, such as mefloquine, arachidonic acid, and 1-hexanol.

View Article and Find Full Text PDF

Overexpression of proteins in transiently transfected cells is a simple way to study basic transport mechanisms and the underlying protein-protein interactions. While expression systems have obvious drawbacks compared to in vivo experiments, they allow a quick assessment of more conserved functions, for instance, ER export or sorting of proteins in the Golgi. In a previous study, our group described the formation of ER-derived removal vesicles for the gap junction protein Cx36 in transfected HEK293T cells.

View Article and Find Full Text PDF

Protector Role of Cx30.2 in Pancreatic β-Cell against Glucotoxicity-Induced Apoptosis.

Biology (Basel)

June 2024

Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico.

Unlabelled: Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family.

View Article and Find Full Text PDF

Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca oscillations in pancreatic ß-cells.

Math Biosci

August 2024

Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. Electronic address:

Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets.

View Article and Find Full Text PDF

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!