A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability. | LitMetric

The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability.

Biochem J

Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.

Published: January 2006

The dimeric structure of certain cytosolic GSTs (glutathione S-transferases) is stabilized by a hydrophobic lock-and-key motif at their subunit interface. In hGSTA1-1 (human class Alpha GST with two type-1 subunits), the key consists of two residues, Met51 and Phe52, that fit into a hydrophobic cavity (lock) in the adjacent subunit. SEC (size-exclusion chromatography)-HPLC, far-UV CD and tryptophan fluorescence of the M51A and M51A/F52S mutants indicated the non-disruptive nature of these mutations on the global structure. While the M51A mutant retained 80% of wild-type activity, the activity of the M51A/F52S was markedly diminished, indicating the importance of Phe52 in maintaining the correct conformation at the active site. The M51A and M51A/F52S mutations altered the binding of ANS (8-anilinonaphthalene-l-sulphonic acid) at the H-site by destabilizing helix 9 in the C-terminal region. Data from urea unfolding studies show that the dimer is destabilized by both mutations and that the dimer dissociates to aggregation-prone monomers at low urea concentrations before global unfolding. Although not essential for the assembly of the dimeric structure of hGSTA1-1, both Met51 and Phe52 in the intersubunit lock-and-key motif play important structural roles in maintaining the catalytic and ligandin functions and stability of the GST dimer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360702PMC
http://dx.doi.org/10.1042/BJ20051066DOI Listing

Publication Analysis

Top Keywords

lock-and-key motif
12
met51 phe52
12
intersubunit lock-and-key
8
residues met51
8
dimeric structure
8
m51a m51a/f52s
8
motif human
4
human glutathione
4
glutathione transferase
4
transferase a1-1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!