Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery.

J Am Chem Soc

Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, USA.

Published: October 2005

A straightforward method for loading hydrophobic materials into commercially available polymer nano- or microparticles is described. PMMA and PS nano/microparticles were swelled by an organic solvent with an ionic surfactant (SDS) to stabilize the particles in aqueous solution. FITC and Ru(dpp)3Cl2 were loaded into those particles based on the principle of "like dissolves like". Further surface modification of the loaded particles was achieved via layer-by-layer (LbL) self-assembly. Culture of fibroblasts with the dye-doped, coated particles showed that the cells internalized the fluorescent particles with no apparent toxic effects. The findings suggest the facile process could be useful in a wide range of applications for fluorescent micro/nanosensors and drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359015PMC
http://dx.doi.org/10.1021/ja052188yDOI Listing

Publication Analysis

Top Keywords

loading hydrophobic
8
hydrophobic materials
8
drug delivery
8
loaded particles
8
particles
6
materials polymer
4
polymer particles
4
particles implications
4
implications fluorescent
4
fluorescent nanosensors
4

Similar Publications

Engineering an Ionic Aggregation-Induced Luminescence-Labeled Fluorescence Lateral Flow Immunoassay for C-Reactive Protein in Human Plasma.

Anal Chem

December 2024

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).

View Article and Find Full Text PDF

Pea protein nano-micelles gained with partial hydrolysis by a proteolytic enzyme (Protamex) were employed as nanocarriers to encapsulate and stabilize liable and hydrophobic curcumin (CUR) with two various methods (pH-driven method (PDM) and ethanol-induced method (EIM)). Both CUR-loaded pea protein hydrolysates (PPHs) nano-micelles by PDM and EIM exhibited spherical shapes, and uniform particle size distributions. Highest CUR loading amount (3.

View Article and Find Full Text PDF

Myrrh oleo-gum-resin (MOGR) is a natural substance that has a rich history of medicinal use due to its anti-inflammatory, antimicrobial, and antioxidant properties. The present study reports on the fabrication and assessment of pectin and K-carrageenan composite films infused with varying proportions (0.3%, 0.

View Article and Find Full Text PDF

Introduction: Since the population of Europe is rapidly aging, the number of cases of neurodegenerative diseases sharply increases. One of the most significant limitations of current neurodegenerative disease treatment is the inefficient delivery of neuroprotective drugs to the affected part of the brain. One of the promising methods to improve the pharmacokinetic and pharmacodynamic properties of antioxidants is their encapsulation in nanocarriers.

View Article and Find Full Text PDF

Design of highly leaf-adhesive and anti-UV herbicide nanoformulation for enhanced herbicidal activity.

J Adv Res

December 2024

Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China. Electronic address:

Introduction: Conventional pesticide formulations have been widely used to boost agricultural productivity, but their weak foliar adhesion and instability under UV light during spraying lead to low utilization rates and potential environmental and health hazards. To counter these challenges, the development of nanoformulations represents a pivotal strategy. These advanced formulations are designed to enhance the efficacy of active ingredients (AIs) and reduce ecological impacts, thereby addressing the need for sustainable agricultural development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!