An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage against its conciseness. It enables nonexpert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy. It enables adaptation of parameters across batches of images. It simplifies the user interface to just one optional parameter and reduces the cost of technical support. Finally, the method is modular, extensible, and amenable to parallel computation. The method is applied to 223 images of human retinas and cultured neurons, from four different sources, using a single segmentation algorithm with eight parameters. Improvements in segmentation quality compared to default settings using 1000 iterations ranged from 4.7%-21%. Paired t-tests showed that improvements are statistically significant (p < 0.0005). Most of the improvement occurred in the first 44 iterations. Improvements in description lengths and agreement with the ground truth were strongly correlated (p = 0.78).

Download full-text PDF

Source
http://dx.doi.org/10.1109/tip.2005.852462DOI Listing

Publication Analysis

Top Keywords

vessel/neurite segmentation
8
segmentation algorithms
8
parameter settings
8
segmentation algorithm
8
segmentation
5
automatic selection
4
selection parameters
4
parameters vessel/neurite
4
algorithms automated
4
automated method
4

Similar Publications

An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage against its conciseness. It enables nonexpert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!