We report enhancement of electroluminescence through opaque-topped metal cathodes in organic light-emitting devices (OLEDs), which are periodically corrugated in two dimensions. The enhancement is caused by grating-induced cross coupling and outcoupling of surface plasmons. The emission intensity observed at normal direction is enhanced by a factor of 4 compared with that of OLEDs with one-dimensionally corrugated metal cathodes and is higher than that observed from the transparent substrate side in uncorrugated OLEDs. We attribute the enhancement to the fact that the surface plasmons propagating in all lateral directions are coupled out into free space by the two-dimensional corrugated structure of the OLEDs. In addition, the emission from the transparent substrate side is also much enhanced owing to the efficient coupling out of the waveguide modes trapped in the emissive layer.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.30.002302DOI Listing

Publication Analysis

Top Keywords

enhancement electroluminescence
8
two-dimensional corrugated
8
corrugated metal
8
cross coupling
8
metal cathodes
8
surface plasmons
8
transparent substrate
8
substrate side
8
enhancement
4
electroluminescence two-dimensional
4

Similar Publications

Strong Enhancement of Light Emission in Core-Shell InGaN/GaN Multi-Quantum-Well Nanowire Light-Emitting Diodes by Incorporating Graphene Quantum Dots.

ACS Appl Mater Interfaces

January 2025

Department of Applied Physics and Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Korea.

One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).

View Article and Find Full Text PDF

Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.

View Article and Find Full Text PDF

Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.

View Article and Find Full Text PDF

Recent Advances in Next-Generation Textiles.

Adv Mater

January 2025

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.

Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!