Unfavorable aggregation and deposition of colloidal particles in natural and engineered systems is still a subject of debate. Complicating factors such as surface roughness, secondary minimum aggregation, and the nature of discrete surface charge and surface potential make it difficult to attribute a specific cause to these phenomena. The presence of surface charge heterogeneity and its influence on interaction forces, which are responsible for aggregation and deposition, are studied in this work through the application of atomic force microscopy (AFM). Force-volume-mode AFM was used to map interaction forces on a surface and relate them to surface charge heterogeneities. The experimental system consisted of a silica plate and a standard silicon nitride AFM tip. Copper ions were used for sorption on the silica surface in order to modify the surface charge and cause charge reversal. Different concentrations of copper ions were selected to identify conditions of partial coverage of the silica surface. The pH and ionic strength of the solutions were varied, and the extension of the surface charge modification and its influence on the resulting interaction forces were monitored via AFM force measurements. Depending on the pH and ionic strength, the interaction force was found to change at certain regions on the surface from attraction to either weak or strong repulsion. Force imaging allowed the visual localization of zones of strong repulsive interaction that diminished in size with increasing ionic strength. X-ray photoelectron spectroscopy analysis was used to confirm the presence of copper on the surface. Local charge differences on a surface result in local differences in surface forces, not only in magnitude but also in direction. This behavior may explain the aggregation, deposition, and transport of colloidal particles under unfavorable chemical conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es050100a | DOI Listing |
Dalton Trans
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.
Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFAdv Mater
January 2025
National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.
The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!