We demonstrate the mode-selective excitation of coherent phonons at Pt(111) surfaces covered with submonolayer caesium atoms. A burst of 150 fs laser pulses with the repetition rate of 2.0-2.9 THz was synthesized by using a spatial-light modulator, and used for the coherent surface phonon excitation. The coherent nuclear motion was monitored by time-resolved second harmonic generation. By tuning the repetition rate, we succeeded in controlling the relative amplitude of the vibrational coherence of the Cs-Pt stretching mode (2.3-2.4 THz) to that of the Pt surface Rayleigh phonon mode (2.6 or 2.9 THz, depending on the Cs coverage).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b507128c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!