Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan.

Photochem Photobiol Sci

Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.

Published: October 2005

The kinetics and mechanism of the oxidation of Glycine (Gly), Alanine (Ala), Tyrosine (Tyr), Tryptophan (Trp) and some di-(Gly-Gly, Ala-Ala, Gly-Ala, Gly-Trp, Trp-Gly, Gly-Tyr, Tyr-Gly), tri-(Gly-Gly-Gly, Ala-Gly-Gly) and tetrapeptides (Gly-Gly-Gly-Gly) mediated by sulfate (SO(4) (-)) and hydrogen phosphate (HPO(4) (-)) radicals was studied, employing the flash-photolysis technique. The substrates were found to react with sulfate radicals (SO(4) (-), produced by photolysis of the S(2)O(8)(2-)) faster than with hydrogen phosphate radicals (HPO(4) (-), generated by photolysis of P(2)O(8)(4-) at pH = 7.1). The reactions of the zwitterions of the aliphatic amino acids and peptides with SO(4) (-) radicals take place by electron transfer from the carboxylate moiety to the inorganic radical, whereas those of the HPO(4) (-) proceed by H-abstraction from the alpha carbon atom. The phenoxyl radical of Tyr-Gly and Gly-Tyr are formed as intermediate species of the oxidation of these peptides by the inorganic radicals. The radical cations of Gly-Trp and Trp-Gly (at pH = 4.2) and their corresponding deprotonated forms (at pH = 7) were detected as intermediates species of the oxidation of these peptides with SO(4) (-) and HPO(4) (-). Reaction mechanisms which account for the observed intermediates are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b507856cDOI Listing

Publication Analysis

Top Keywords

hydrogen phosphate
12
phosphate radicals
8
gly-trp trp-gly
8
peptides so4
8
species oxidation
8
oxidation peptides
8
radicals
6
kinetics interaction
4
interaction sulfate
4
sulfate hydrogen
4

Similar Publications

Tumor immunotherapy has been widely used clinically, but it is still hindered by weak antitumor immunity and immunosuppressive tumor microenvironment (TME). Here, a kind of simple disodium hydrogen phosphate nanoparticle (Na2HPO4 NP) is prepared to "accelerate" tumor immunotherapy by "increasing throttle" and "relaxing brake" simultaneously. The obtained Na2HPO4 NPs release a large amount of Na+ and HPO42- ions within tumor cells, thereby activating the caspase 1/GSDMD-mediated pyroptosis pathway to achieve immune activation.

View Article and Find Full Text PDF

Background: The use of laryngeal masks (LM) has increased widely today, both in anesthesia and in emergency cases. LM are available as reusable and disposable. Although reuse of disposable LM is not recommended, they are reused again after decontamination with different methods in anesthesia units in some countries.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

The pharmaceutical quality of freeze-dried tablets containing therapeutic bacteriophages against Pseudomonas aeruginosa and Staphylococcus aureus.

Int J Pharm

January 2025

Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic. Electronic address:

The preparation of a solid dosage form containing bacteriophages, which meets pharmaceutical requirements and ensures long-term stability of the phage effect, is significant for implementing phage therapy in practice. A commonly used method for processing phages into a solid form is freeze-drying into a (so-called) freeze-dried cake; however, to date there have been no studies examining the pharmacopeial parameters of freeze-dried tablets with bacteriophages. In this study, we describe the preparation and properties of freeze-dried tablets containing a cocktail of purified pseudomonal bacteriophage DSM 33593 from the genus Pbunavirus and staphylococcal bacteriophage DSM 33473 from the genus Kayvirus (10 PFU/tablet) as the active ingredient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!