The sequence and gene organization of the van operons in vancomycin (MIC of >256 microg/ml)- and teicoplanin (MIC of > or =32 microg/ml)-resistant Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B isolated from soil were determined. Both operons had regulatory (vanR and vanS), resistance (vanH, vanA, and vanX), and accessory (vanY, vanZ, and vanW) genes homologous to the corresponding genes in enterococcal vanA and vanB operons. The vanA(PT) operon in P. thiaminolyticus PT-2B1 had the same gene organization as that of vanA operons whereas vanA(PA) in P. apiarius PA-B2B resembled vanB operons due to the presence of vanW upstream from the vanHAX cluster but was closer to vanA operons in sequence. Reference P. apiarius strains NRRL B-4299 and NRRL B-4188 were found to harbor operons indistinguishable from vanA(PA) by PCR mapping, restriction fragment length polymorphism, and partial sequencing, suggesting that this operon was species specific. As in enterococci, resistance was inducible by glycopeptides and associated with the synthesis of pentadepsipeptide peptidoglycan precursors ending in D-Ala-D-Lac, as demonstrated by D,D-dipeptidase activities, high-pressure liquid chromatography, and mass spectrometry. The precursors differed from those in enterococci by the presence of diaminopimelic acid instead of lysine in the peptide chain. Altogether, the results are compatible with the notion that van operons in soil Paenibacillus strains and in enterococci have evolved from a common ancestor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1251550 | PMC |
http://dx.doi.org/10.1128/AAC.49.10.4227-4233.2005 | DOI Listing |
Sci Rep
January 2025
Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
Enterobacter asburiae (E. asburiae) is a gram-negative rod-shaped bacterium which has emerging significance as an opportunistic pathogen having high virulence pattern and drug resistant properties. In this study, we present the detailed analysis of the whole genome sequence of a multidrug-resistant (MDR) E.
View Article and Find Full Text PDFJ Antimicrob Chemother
November 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
Background: Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci.
View Article and Find Full Text PDFPLoS Pathog
August 2024
Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
Vancomycin has proven remarkably durable to resistance evolution by Staphylococcus aureus despite widespread treatment with vancomycin in the clinic. Only 16 cases of vancomycin-resistant S. aureus (VRSA) have been documented in the United States.
View Article and Find Full Text PDFCan J Microbiol
October 2024
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
With antimicrobial resistance (AMR) rapidly evolving in pathogens, quick and accurate identification of genetic determinants of phenotypic resistance is essential for improving surveillance, stewardship, and clinical mitigation. Machine learning (ML) models show promise for AMR prediction in diagnostics but require a deep understanding of internal processes to use effectively. Our study utilised AMR gene, pangenomic, and predicted plasmid features from 647 and genomes across the One Health continuum, along with corresponding resistance phenotypes, to develop interpretive ML classifiers.
View Article and Find Full Text PDFAntibiotics (Basel)
June 2024
Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
The phylogenetic relationships of glycopeptide resistance proteins were investigated. The amino acid sequences of vanA, vanB, vanR and vanS were used as queries to search against bacterial genomes in the NCBI RefSeq database. Hits with >60% amino acid identity and >90% query coverage were aligned, and phylogenetic trees were reconstructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!