The sonolysis of 4-chlorophenol (4-CP) in O2-saturated aqueous solutions is investigated for a variety of operating conditions with the loss of 4-CP from solution following pseudo-first-order reaction kinetics. Hydroquinone (HQ) and 4-chlorocatechol (4-CC) are the predominant intermediates which are degraded on extended ultrasonic irradiation. The final products are identified as Cl-, CO2, CO, and HCO2H. The rate of 4-CP degradation is dependent on the initial 4-CP concentration with an essentially linear increase in degradation rate at low initial 4-CP concentrations but with a plateauing in the rate increase observed at high reactant concentrations. The results obtained indicate that degradation takes place in the solution bulk at low reactant concentrations while at higher concentrations degradation occurs predominantly at the gas bubble-liquid interface. The aqueous temperature has a significant effect on the reaction rate. At low frequency (20 kHz) a lower liquid temperature favours the sonochemical degradation of 4-CP while at high frequency (500 kHz) the rate of 4-CP degradation is minimally perturbed with a slight optimum at around 40 degrees C. The rate of 4-CP degradation is frequency dependent with maximum rate of degradation occurring (of the frequencies studied) at 200 kHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2005.07.003 | DOI Listing |
Small
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy.
Background: Increased whole blood viscosity (WBV) was associated with impaired peripheral glucose metabolism, type 2 diabetes, and cardiovascular disease (CVD). Impaired myocardial glucose metabolism is a risk factor for CVD. Whether an increased WBV is associated with impaired myocardial glucose metabolism is still undefined.
View Article and Find Full Text PDFWater Res
February 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China. Electronic address:
The stable lignocellulose structure in the straw is the main obstacle for methane production during its anaerobic digestion, and the residual chlorophenols in the straw further increase the difficulty. In this study, the anaerobic digestion of corn straw containing 4-chlorophenol was enhanced by the addition of Phanerochaete chrysosporium and biochar. The results revealed that P.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The sustainable and affordable environmental application of Pd catalysis needs further improvement of Pd mass activity. Besides the well-recognized importance of physical utilization efficiency─the ratio of surface atoms forming reactant-accessible reactive sites─a lesser-known fact is that the congestion of these reactive sites, which we term as the chemical utilization efficiency, also influences the mass activity. Herein, by leveraging the 100% physical utilization efficiency of a fully exposed Pd cluster (Pd) and the hydrogenation activity of TiNiN, we developed Pd/TiNiN as a high physical and chemical utilization efficiency catalyst.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Regional Government, Iraq. Electronic address:
The growing concerns for environmental sustainability and the need for eco-friendly practices in the oil and gas industry have sparked the exploration and development of biodegradable drilling fluids. This review highlights the impact of biodegradable waste additives on drilling fluid properties and their cooperation in minimizing the environmental concerns related to drilling fluid disposals. The examined properties include plastic viscosity (PV), yield point (YP), mud weight (MW), fluid loss, and gel strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!