A unique subpopulation of Tbr1-expressing deep layer neurons in the developing cerebral cortex.

Mol Cell Neurosci

Department of Neurobiology, Yale University School of Medicine, 333 Cedar St., SHM/B301, New Haven, CT 06520, USA.

Published: December 2005

Cells of the subplate (SP) and deep cortical plate (CP) are among the pioneer neurons of the developing cerebral cortex, an important group of early-born cells that impact cortical organization and function. Similarities between pioneer neurons in different cortical positions and heterogeneities in pioneer cells in the same cortical location, however, have made it difficult to appreciate the characteristics and functions of particular sets of these cells. Here, we provide a tool to illuminate a unique subset of SP and deep CP neurons: expression of a Tbrain-1 (Tbr1)-driven transgene. Transgene-expressing cells were consistently positive for neuronal but not glial markers, were born early in corticogenesis, representing just a subset of SP and deep CP neurons, were morphologically complex during the formation of the cortex, and were maintained into maturity. This analysis reveals a novel group of pioneer neurons and demonstrates unrecognized diversity within this cortical population. In the future, this information will help to uncover the roles of discrete pioneer populations in cortical development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2005.08.017DOI Listing

Publication Analysis

Top Keywords

pioneer neurons
12
neurons developing
8
developing cerebral
8
cerebral cortex
8
subset deep
8
deep neurons
8
neurons
6
cortical
6
cells
5
pioneer
5

Similar Publications

Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics.

Cell Discov

January 2025

Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.

Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.

View Article and Find Full Text PDF

Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.

View Article and Find Full Text PDF

Pulmonary microbiota disruption by respiratory exposure to carbon quantum dots induces neuronal damages in mice.

J Hazard Mater

January 2025

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, China; School of Public Health, Southeast University, Nanjing 210009, China; Yancheng Kindergarten Teachers College, Yancheng 224005, China.

Given the fact that carbon quantum dots (CQDs) have been commercially produced in quantities, it is inevitable to make their ways into environment and interact closely with the public. Even though CQDs in the environment have been reported to damage the central nervous system, the underlying mechanisms of neurotoxic effects of CQDs following respiratory exposure is still not clear. Intranasal instilled CQDs, mimicking respiratory exposure, induces neurobehavioral impairments associated with neuronal cell death of ferroptosis and disulfidptosis that is regulated by metabolic reprogramming of glutathione and cysteine pathways in the cortex and hippocampus where CQDs were hardly accumulated.

View Article and Find Full Text PDF

1950s-1990s: The pioneering era of insect neuroscience in Uruguay.

Neuroscience

January 2025

Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay. Electronic address:

Insect research has significantly advanced neuroscience by addressing fundamental questions, with groundbreaking discoveries emerging from research carried out in Uruguay. Powered by technological advances, the field has seen milestones in ultrastructure, neuronal and synaptic structure, and complex behavioral findings. Key contributions include the first formal description of chemical synapses, the identification of synaptic vesicle origins in the endoplasmic reticulum, and pioneering work on eye induction and development.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!