The purpose of this study was to derive a land-use regression model to estimate on a geographical basis ambient concentrations of nitrogen dioxide (NO2) in Montreal, Quebec, Canada. These estimates of concentrations of NO2 will be subsequently used to assess exposure in epidemiologic studies on the health effects of traffic-related air pollution. In May 2003, NO2 was measured for 14 consecutive days at 67 sites across the city using Ogawa passive diffusion samplers. Concentrations ranged from 4.9 to 21.2 ppb (median 11.8 ppb). Linear regression analysis was used to assess the association between logarithmic concentrations of NO2 and land-use variables derived using the ESRI Arc 8 geographic information system. In univariate analyses, NO2 was negatively associated with the area of open space and positively associated with traffic count on nearest highway, the length of highways within any radius from 100 to 750 m, the length of major roads within 750 m, and population density within 2000 m. Industrial land-use and the length of minor roads showed-no association with NO2. In multiple regression analyses, distance from the nearest highway, traffic count on the nearest highway, length of highways and major roads within 100 m, and population density showed significant associations with NO2; the best-fitting regression model had a R2 of 0.54. These analyses confirm the value of land-use regression modeling to assign exposures in large-scale epidemiologic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2005.10464708DOI Listing

Publication Analysis

Top Keywords

land-use regression
12
regression model
12
nearest highway
12
nitrogen dioxide
8
concentrations no2
8
epidemiologic studies
8
traffic count
8
count nearest
8
highway length
8
length highways
8

Similar Publications

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

Understanding land use/land cover (LULC) changes is crucial for informing policymakers and planners on the dynamics affecting environmental and resource management. Most past studies highlighted the significance of LULC changes and their driving forces in various locations. However, comprehensive analyses that combine the impact of land management technologies (LMTs) on LULC changes using GIS and remote sensing tools have not been widely addressed.

View Article and Find Full Text PDF

Association of Residential Greenness and Sleep Duration in Adults: A Prospective Cohort Study in China.

Environ Res

January 2025

Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. Electronic address:

Background: Exposure to residential greenness has been linked with improved sleep duration; however, longitudinal evidence is limited, and the potential mediating effect of ambient fine particulate matter (PM) has yet to be assessed.

Methods: We obtained data for 19,567 participants across seven counties in a prospective cohort in Ningbo, China. Greenness was estimated using Normalized Difference Vegetation Index (NDVI) within 250-m, 500-m and 1000-m buffer zones, while yearly average PM concentrations were measured using validated land-use regression models, both based on individual residential addresses.

View Article and Find Full Text PDF

The land use transition plays an important role for terrestrial environmental services, which had a mixed impact of positive and negative on the groundwater and terrestrial water resource. The health of ecological systems and groundwater depends on the mapping and management of land use. The Ganga basin is one of the most densely populated and agriculture-intensive river systems in the South Asia and the world.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!