One-pot multi-step synthesis: a challenge spawning innovation.

Org Biomol Chem

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.

Published: August 2005

Creating one-pot synthetic routes is a challenge that is already spawning new chemistry, enzymes, materials, and mechanistic insight. Through one-pot reactions, the chemical products that add value to our lives can be produced with less waste and greater economic benefits. Within this Emerging Area, we describe models for designing one-pot reactions as well as advanced catalysts created to facilitate their realization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b506621mDOI Listing

Publication Analysis

Top Keywords

challenge spawning
8
one-pot reactions
8
one-pot
4
one-pot multi-step
4
multi-step synthesis
4
synthesis challenge
4
spawning innovation
4
innovation creating
4
creating one-pot
4
one-pot synthetic
4

Similar Publications

Advances and challenges in precision imaging.

Lancet Oncol

January 2025

Department of Radiology and Center for Systems Biology, Massachusetts General Brigham, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Electronic address:

Article Synopsis
  • Technological innovations in genomics have enabled large sequencing projects and new biological insights in cancer, leading to the rise of liquid biopsy biomarkers.
  • Despite progress in precision oncology, challenges remain due to cancer's complexity and variability, impacting effective treatment strategies.
  • Advanced imaging technologies are being developed to enhance early detection and treatment options, but there are obstacles to their wider implementation in clinical settings that must be addressed.
View Article and Find Full Text PDF

Due to the logistical and financial challenges in studying migratory marine species, there is relatively limited knowledge of the reproductive biology, behavior, and habitat use of many ecologically important marine megafauna species, including the Atlantic tarpon Megalops atlanticus. Here, we present a novel observation using consumer-grade aerial drones to observe, quantify the scale of, and classify behaviors within a previously unreported tarpon aggregation (N = 182) over the course of a 2-day fish aggregation event. After the event, we analysed and compared observed behaviors (e.

View Article and Find Full Text PDF

Temporal variability in mortality and recruitment jointly influence the periodic fluctuations in Antarctic krill populations.

Mar Environ Res

December 2024

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; Polar Marine Ecosystem Group, The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China. Electronic address:

Antarctic krill (Euphausia superba) is a key part of the food web in the Southern Ocean ecosystem. Significant inter-annual fluctuations in population dynamics make stock assessment and management of its population a significant challenge. To better understand the population dynamics and fluctuation of krill, a survey-based age-structured catch-at-length model (ACL) is used to estimate the periodic fluctuations, based on length data collected from scientific surveys under the US Antarctic Marine Living Resources (AMLR) Program between 1992 and 2011.

View Article and Find Full Text PDF

Background: Ethnobotanical knowledge about plant roles in fisheries is crucial for sustainable resource management. Local ecological knowledge helps understand dynamics of the lake ecosystem. Fishers use plants based on availability and characteristics while adapting to the changes in the environment.

View Article and Find Full Text PDF

Spawning is accompanied by increased thermal performance in blue mussels.

J Therm Biol

November 2024

Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790 AB Den Burg, the Netherlands. Electronic address:

Climate change is causing extreme short-term warming with greater intensity and more frequent occurrence. Reproduction and subsequent recruitment of coastal ecosystem engineers, such as the blue mussel, may be impacted by the extreme temperatures because these vital functions are sensitive to the timing of short-term changes in abiotic factors. We exposed intertidal blue mussels, Mytilus edulis, to a thermal challenge from 10 to 29 °C using an ecologically relevant heating rate of 4 °C/h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!