Brain macrophages are known to exert dual and opposing functions on neuronal survival, which can be either beneficial or detrimental. The rationale of our study is that this duality could arise from an exclusive secretion of either pro- or anti-inflammatory cytokine by distinct cell subsets, cytokines that could respectively mediate neurotoxic or neurotrophic effects. Innate immune response was induced in macrophage cultures prepared from embryonic-day-16 to postnatal-day-8 mouse brains. By immunofluorescent detection of intracellular cytokines, we have assessed the occurrence of TNFalpha or IL10 synthesis at single cell level and observed distinct secretory patterns that include cells producing exclusively TNFalpha or IL10, cells producing both cytokines and non-producer cells. These secretory patterns are differentially regulated by MAP-kinase inhibitors. Altogether, these results demonstrate that synthesis of either a pro- or an anti-inflammatory cytokine can segregate distinct brain macrophages and suggests a functional cell-subset-specialisation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2005.08.005 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China.
Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.
View Article and Find Full Text PDFNarra J
December 2024
Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Systemic lupus erythematosus (SLE) is a prevalent autoimmune disease affecting multiple organ systems. Disease progression is inevitable as part of its natural course, necessitating aggressive therapeutic strategies, particularly with the use of immunosuppressants. Long-term use of steroids and other immunosuppressants is associated with significant adverse effects.
View Article and Find Full Text PDFNarra J
December 2024
Center for Preventive Medical Sciences, Chiba University, Chiba, Japan.
A worldwide issue, vitamin D deficiency affects pregnant mothers and babies everywhere, including Indonesia. It involves the adaptive immune system by controlling the production of pro-and anti-inflammatory cytokines and the balance between humoral (Th2) and cell-mediated (Th1) immunity. The aim of this study was to investigate the relationship between vitamin D and the cytokines IL-6 and IL-10 in infants.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:
Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!