M-DNA, a complex formed in solution between divalent metal ions (M) and duplex DNA, has been studied extensively using fluorescence quenching. This review examines the methods used to examine the formation of M-DNA, and its ability to serve as a pathway for electron transfer between donor and acceptor chromaphores. A mass action model for M-DNA formation is presented based upon the results of fluorescence quenching studies using fluorescein/QSY-7 labeled duplexes. From the mass action analysis, it was determined that approximately 1.4 protons are released per base pair, with k(eq) on the order of 10(-8), indicative of a strong interaction. As resonance energy transfer is shown to be unlikely over the distances involved in this work, the observed quenching in M-DNA is discussed in terms of an electron hopping mechanism for electron transfer, with k(hop)=2.5 x 10(11)s(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2005.07.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!