A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.08.064DOI Listing

Publication Analysis

Top Keywords

intermembrane space
28
human mia40
20
mitochondrial intermembrane
12
cysteine residues
12
mia40
11
human
8
import mitochondrial
8
human mitochondria
8
conserved cysteine
8
intermembrane
7

Similar Publications

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink.

Biomolecules

January 2025

School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase.

View Article and Find Full Text PDF

Hotspots for Disease-Causing Mutations in the Mitochondrial TIM23 Import Complex.

Genes (Basel)

November 2024

School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments.

View Article and Find Full Text PDF

A novel super-resolution STED microscopy analysis approach to observe spatial MCU and MICU1 distribution dynamics in cells.

Biochim Biophys Acta Mol Cell Res

January 2025

Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:

The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!