A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetics of loop formation and breakage in the denatured state of iso-1-cytochrome c. | LitMetric

Kinetics of loop formation and breakage in the denatured state of iso-1-cytochrome c.

J Mol Biol

Department of Chemistry and Biochemistry, 2190 E. Iliff Avenue, University of Denver, Denver, CO 80208-2436, USA.

Published: October 2005

The earliest events in protein folding involve the formation of simple loops. Observing the rates of loop closure under denaturing conditions can provide direct insight into the relative probability and sequence determinants for formation of loops of different sizes. The persistence of these initial contacts is equally important for efficient folding, so measurement of rates of loop breakage under denaturing conditions is also essential. We have used stopped-flow and continuous-flow methods to measure the rates of histidine-heme loop formation and breakage in the denatured state of iso-1-cytochrome c (in the presence of 3 M guanidine HCl). The data indicate that the mechanism for forming loops is a two-step process, the first step being the deprotonation of the histidine, and the second step being the binding of the histidine to the heme. This mechanism makes it possible to extract both the rate constants of formation, k(f), and breakage, k(b), of loops from the pH dependence of the observed rate constant, k(obs). To determine the dependence of k(f) and k(b) on loop size, we have carried out kinetic measurements for seven single surface histidine variants of iso-1-cytochrome c. A scaling factor (the dependence of k(f) on log[loop size]) of approximately -1.8 is observed for loop formation, similar to that observed in other systems. The magnitude of k(b) varies from 30 s(-1) to 300 s(-1), indicating that the stability of different loops varies considerably. The implications of the kinetics of loop formation and breakage in the denatured state for the mechanism of protein folding are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.08.034DOI Listing

Publication Analysis

Top Keywords

loop formation
16
formation breakage
16
breakage denatured
12
denatured state
12
kinetics loop
8
state iso-1-cytochrome
8
protein folding
8
rates loop
8
denaturing conditions
8
formation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!