In the aging heart, decreased rates of calcium transport mediated by the SERCA2a isoform of the sarcoplasmic reticulum (SR) Ca-ATPase are responsible for the slower sequestration of cytosolic calcium and consequent prolonged muscle relaxation times. We report a 60% decrease in Ca-ATPase activity in the senescent Fischer 344 rat heart relative to that of young adult hearts; this functional decrease can be attributed, in part, to the 18% lower abundance of SERCA2a protein. Here, we show that the additional loss of activity is a result of increased 3-nitrotyrosine modification of the Ca-ATPase. Age-dependent increases in nitration of cardiac SERCA2a are identified using multiple analytical methods. In the young (adult) heart 1 molar equivalent of nitrotyrosine is distributed over at least five tyrosines within the Ca-ATPase, identified as Tyr(122), Tyr(130), Tyr(497), Tyr(586), and Tyr(990). In the senescent heart, the stoichiometry of nitration increases by more than two nitrotyrosines per Ca-ATPase, coinciding with the appearance of nitrated Tyr(294), Tyr(295), and Tyr(753). The abundant recovery of native analogues for each of the nitrated peptides indicates partial modification of multiple tyrosines within cardiac SERCA2a. In contrast, within skeletal muscle SERCA2a, a homogeneous pattern of nitration appears, with full site (1 mol/mol) nitration of Tyr(753), in young, with additional nitration of Tyr(294) and Tyr(295), in senescent muscle. The nitration of these latter vicinal sites correlates with diminished transport function in both striated muscle types, suggesting that these sites provide a mechanism for downregulation of ATP utilization by the Ca-ATPase under conditions of nitrative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi051226n | DOI Listing |
J Gen Physiol
December 2024
Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden.
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland.
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental stimuli remain largely unclear. Therefore, the aim of this study was to assess the influence of selected single stresses and combined stresses (i.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of International Science and Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
Protein nitrotyrosine is an essential post-translational modification that results from the nitration of tyrosine amino acid residues. This modification is known to be associated with the regulation and characterization of several biological functions and diseases. Therefore, accurate identification of nitrotyrosine sites plays a significant role in the elucidating progress of associated biological signs.
View Article and Find Full Text PDFCurr Opin Chem Biol
June 2024
Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Electronic address:
Peroxynitrite, a short-lived and reactive oxidant, emerges from the diffusion-controlled reaction between the superoxide radical and nitric oxide. Evidence shows that peroxynitrite is a critical mediator in physiological and pathological processes such as the immune response, inflammation, cancer, neurodegeneration, vascular dysfunction, and aging. The biochemistry of peroxynitrite is multifaceted, involving one- or two-electron oxidations and nitration reactions.
View Article and Find Full Text PDFJ Immunoassay Immunochem
March 2024
Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
Ischemic cerebrovascular accident (iCVA) is a public health issue, whose subjacent events involve the development of nitroxidative distress. Identifying biomarkers that assist in the diagnosis of this disease has clinically relevant implications. The aim of this study was to develop an analytic tool for measuring nitroxidative distress biomarkers, intended for application in clinical practice to enhance patient healthcare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!