Both prokaryotes and eukaryotes respond to a decrease in temperature with the expression of a specific subset of proteins. We are investigating how Bacillus subtilis cells sense and transduce low-temperature signals to adjust its gene expression. One important step has been accomplished in the dissection of a novel pathway for the adjustment of unsaturated fatty acid synthesis in B.subtilis, termed the Des pathway. It responds to a decrease in growth temperature by enhancing the expression of the des gene, coding for an acyl-lipid desaturase. The Des pathway is uniquely and stringently regulated by a tw-component system composed of a membrane-associated kinase, DesK, and a soluble transcriptional activator, DesR. The temperature sensing ability of the DesK protein is regulated by the extent of disorder within the membrane lipid bilayer. In this work, we present the mechanism by which the sensor protein DesK controls the signal decay of its cognate partner, DesR, and how this response regulator activates transcription of its target promoter. The results of these analysis will be presented and discussed in the context of transcriptional regulation of membrane fluidity homeostasis.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.
Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.
View Article and Find Full Text PDFTalanta
December 2024
The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China. Electronic address:
This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.
As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!