The molecular mechanisms underlying the chemopreventive effects of NSAIDs are not well understood and remain the subject of debate. One of the mechanistic possibilities involves alterations in gene expression. We examined gene expression profiles in SNU601 gastric cancer cells treated with sulindac sulfide (50 microM) for 24 hr. Microarray analysis showed that 1.3% (105/8170) of genes were induced or repressed more than 3-fold in cells treated with sulindac sulfide. Seven genes were selected and confirmed by reverse transcription-polymerase chain reaction. Inhibitor of differentiation/DNA binding-1 (Id-1) was downregulated in SNU601 cells treated with sulindac sulfide. Id-1 expression level was decreased dose-dependently by sulindac sulfide. In addition, the expression pattern of Id-1 was inversely related to that of nm23. We also examined Id-1 expression in human gastric cancer tissues and compared it with clinicopathologic parameters to study its biologic role in the cancers. Id-1 was frequently and strongly expressed in gastric cancer tissues compared with that in adjacent nonmetaplastic mucosa. Its immunoreactivity scores were positively correlated to Ki67 labeling indices and tumor progression, and is higher in intestinal type than in diffuse type. In summary, a number of genes, both induced and repressed, could be important in mediating sulindac sulfide-induced cell death in gastric cancer cells. Id-1, one of the repressed genes, is upregulated in gastric cancers and has positive role in tumor progression and histogenesis of intestinal-type cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.21503 | DOI Listing |
Biochem Pharmacol
June 2024
Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea. Electronic address:
Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown.
View Article and Find Full Text PDFFront Immunol
October 2023
Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States.
Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited.
View Article and Find Full Text PDFChem Biol Interact
September 2023
Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan. Electronic address:
Cytochrome P450 4A11 (CYP4A11) has many endogenous and exogenous compounds containing a carboxyl group in their structure as substrates. If drugs with this characteristic potently attenuate the catalytic function of CYP4A11, drug-drug interactions may occur. Acidic non-steroidal anti-inflammatory drugs (NSAIDs) possess a carboxylic acid in their structure.
View Article and Find Full Text PDFOncogene
June 2023
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues.
View Article and Find Full Text PDFJ Thromb Haemost
June 2023
Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China. Electronic address:
Background: Hemorrhage, in particular noncompressible hemorrhage, is the leading cause of casualties in combat trauma and civilian trauma. Although systemic agents can stop bleeding at both inaccessible and accessible injury sites, the application of systemic hemostats in clinics is strictly limited by the nontargeting ability of hemostats and their subsequent potential for thromboembolic complications.
Objectives: To engineer an anticoagulant/procoagulant self-converting and bleeding site-targeting systemic nanohemostat to rapidly control noncompressible bleeding without thrombosis risk.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!