Calcium phosphate cement (CPC) sets in situ with intimate adaptation to the contours of defect surfaces, and forms an implant having a structure and composition similar to hydroxyapatite, the putative mineral in teeth and bones. The objective of the present study was to develop an injectable CPC using dicalcium phosphate dihydrate (DCPD) with a high solubility for rapid setting. Two agents were incorporated to impart injectability and fast-hardening to the cement: a hardening accelerator (sodium phosphate) and a gelling agent (hydroxypropyl methylcellulose, HPMC). The cement with DCPD was designated as CPC(D), and the conventional cement was referred to as CPC(A). Using water without sodium phosphate, CPC(A) had a setting time of 82 +/- 6 min. In contrast, CPC(D) exhibited rapid setting with a time of 17 +/- 1 min. At 0.2 mol/L sodium phosphate, setting time for CPC(D) was 15 +/- 1 min, significantly faster than 40 +/- 2 min for CPC(A) (Tukey's at 0.95). Sodium phosphate decreased the paste injectability (measured as the paste mass extruded from the syringe divided by the original paste mass inside the syringe). However, the addition of HPMC dramatically increased the paste injectability. For CPC(D), the injectability was increased from 65% +/- 12% without HPMC to 98% +/- 1% with 1% HPMC. Injectability of CPC(A) was also doubled to 99% +/- 1%. The injectable and rapid-setting CPC(D) possessed flexural strength and elastic modulus values overlapping the reported values for sintered porous hydroxyapatite implants and cancellous bone. In summary, the rapid setting and relatively high strength and elastic modulus of CPC(D) should help the graft to quickly attain strength and geometrical integrity within a short period of time postoperatively. Furthermore, the injectability of CPC(D) may have potential for procedures involving defects with limited accessibility or narrow cavities, when there is a need for precise placement of the paste, and when using minimally invasive surgical techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.30403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!