The mechanism of crystallization of soluble, globular protein (lysozyme) in the presence of nonionic surfactant C8E4 (tetraoxyethylene glycol monooctyl ether) was examined using both static and dynamic light scattering. The interprotein interaction was found to be attractive in solution conditions that yielded crystals and repulsive in the noncrystallizing solution conditions. The validity of the second virial coefficient as a criterion for predicting protein crystallization could be established even in the presence of nonionic surfactants. Our experiments indicate that the origin of the change in interactions can be attributed to the adsorption of nonionic surfactant monomers on soluble proteins, which is generally assumed to be the case with only membrane proteins. This adsorption screens the hydrophobic attractive force and enhances the hydration and electrostatic repulsive forces between protein molecules. Thus at low surfactant concentration, the effective protein-protein interaction remains repulsive. Large surfactant concentrations promote protein crystallization, possibly due to the attractive depletion force caused by the intervening free surfactant micelles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366989 | PMC |
http://dx.doi.org/10.1529/biophysj.105.066449 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!