In congenital heart disease with left- or right-sided obstruction, prostaglandin E (PGE)1 or PGE2 is infused to maintain ductus arteriosus (DA) patency. We hypothesized that transfection of the DA with PGE synthase would lead to a greater production of PGE2 in situ and, hence, patency of the DA. The cDNA for human prostaglandin synthase was sequenced and ligated into a eukaryotic expression vector. The negative control was created by ligating the cDNA encoding the bacterial protein chloramphenicol acetyltransferase into the same plasmid. Transfection (600 microg DNA) was achieved in lambs within the first 24 h of life using the hemagglutinating virus of Japan (HVJ)-liposome transfection method with a custom-made, basket-weave-perforated catheter. Echocardiography was performed to assess DA patency until the time of sacrifice. To confirm expression of the transgene, PGE2 concentration was measured in organ culture of the DA by immunoassay and by Western immunoblotting of homogenized DA tissue. Patency of the DA was demonstrated by color Doppler in all the lambs (7/7) in which the PGE synthase was delivered, whereas functional closure was seen in the control group (6/6). The PGE2 concentration in the culture medium of the explanted DA in the treatment group was 3-fold higher than that of the control groups. Western immunoblotting confirmed the presence of PGE synthase in the treatment group. Gene transfer of PGE synthase to the DA is feasible and will maintain patency for at least 1 wk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1203/01.PDR.0000182820.20333.2A | DOI Listing |
Unlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Parasitology, Chung Shan Medical University, Taichung, 402, Taiwan.
Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland.
Introduction: Prostaglandins (PG) are important regulators of the myometrial contractility in mammals. Endometrosis, a condition characterized by morphological changes in the equine endometrium, also affects endometrial secretory function. However, it remains unclear whether and how endometrosis affects myometrial function.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmacy, University of Salerno, Fisciano, Italy.
Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!