Induction of beta3-adrenergic receptor functional expression following chronic stimulation with noradrenaline in neonatal rat cardiomyocytes.

J Pharmacol Exp Ther

Biomedical Research Centre, School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

Published: January 2006

This study aimed to characterize beta(3)-adrenergic receptors (ARs) in rat neonatal cardiomyocytes using the noradrenaline (NOR) properties to modulate the expression and function of the three beta-ARs. We assessed the effect of NOR (physiological nonselective agonist), isoprenaline (ISO, beta-nonselective agonist), dobutamine (DOB, beta(1)-selective agonist), and procaterol (PROC, beta(2)-selective agonist) on cAMP accumulation using cardiomyocytes untreated or treated with 100 microM NOR for 24 h. The inhibition of forskolin-stimulated cAMP accumulation was determined using NOR, isoprenaline, and the beta(3)-selective agonists 4-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl)amino]propyl]phenoxyacetic acid (BRL 37344) and 5-[-2-([-2-(3-chlorophenyl)-2-hydroxyethyl]amino)propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243). The experiments were performed in the absence or presence of propranolol or 2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]propyl]amino]ethoxy]-benzamide methanesulfonate (CGP 20712A) and/or 1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride (ICI 118551) to inhibit beta(1)- and beta(2)-AR stimulation and 1-(2-ethylphenoxy)-3-[[1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino-(2S)-2-propanol hydrochloride (SR 59230A) (beta(3)-selective antagonist). In addition, the level of the three subtypes was determined by reverse transcription polymerase chain reaction and Western blotting. NOR pretreatment decreased the activation of cAMP induced by NOR, isoprenaline, and DOB, whereas PROC response was abolished. The inhibition of NOR response by CGP 20712A or ICI 118551 demonstrated that beta(1)- and beta(2)-ARs are down-regulated and that beta(2)-AR functional activity was also abolished in cardiomyocytes exposed to chronic stimulation. beta(3)-AR function was observed with NOR and ISO when beta(1)-/beta(2)-ARs were blocked and with both beta(3)-selective agonists in NOR-treated cells only. This response was completely inhibited by SR 59230A and involved G(i) protein. Furthermore, the results from functional studies agree well with those from expression experiments. In conclusion, these data provide strong evidence that beta(3)-ARs are functionally up-regulated and coupled to G(i) protein in rat neonatal cardiomyocytes following chronic exposure to NOR when beta(1)- and beta(2)-ARs are down-regulated.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.105.090597DOI Listing

Publication Analysis

Top Keywords

chronic stimulation
8
rat neonatal
8
neonatal cardiomyocytes
8
camp accumulation
8
beta3-selective agonists
8
cgp 20712a
8
ici 118551
8
beta1- beta2-ars
8
beta2-ars down-regulated
8
cardiomyocytes
5

Similar Publications

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.

View Article and Find Full Text PDF

Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.

View Article and Find Full Text PDF

Local field potential (LFP) recordings using chronically implanted sensing-enabled stimulators are a powerful tool for indexing symptom presence and severity in neurological and neuropsychiatric disorders, and for enhancing our neurophysiological understanding of brain processes. LFPs have gained interest as input signals for closed-loop deep brain stimulation (DBS) and can be used to inform DBS parameter selection. LFP recordings using chronically implanted sensing-enabled stimulators have various implementational challenges.

View Article and Find Full Text PDF

Advancements in Wound Bed Preparation of Chronic Wounds.

Surg Technol Int

January 2025

Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.

Chronic wounds are notoriously challenging to heal as they are often halted in their normal healing process. The concept of TIME (Tissue, Inflammation/Infection, Moisture imbalance, Epithelial edge advancement) has been widely utilized in clinical practice to prepare wound beds and promote healing, particularly in longstanding wounds. Traditional methods of wound bed preparation are often inadequate in healing chronic wounds or they may not be tolerated by patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!