cAMP-elevating agents such as forskolin and vasoactive intestinal peptide induce liquid secretion by tracheobronchial submucosal glands. This pathway is thought to be CFTR dependent and thus defective in cystic fibrosis; however, the ionic mechanism that drives this secretion process is incompletely understood. To better define this mechanism, we studied the effects of ion transport inhibitors on the forskolin-induced liquid secretion response (Jv) of porcine distal bronchi. The forskolin-induced Jv was driven by a combination of bumetanide-sensitive Cl- secretion and DIDS-sensitive HCO3- secretion. When Cl- secretion was inhibited with bumetanide, Na+/H+ exchange-dependent HCO3- secretion was apparently induced to compensate for the loss of Cl- secretion. The forskolin-induced Jv was significantly inhibited by the anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, and glibenclamide. We conclude that the forskolin-induced Jv shares many characteristics of cholinergically induced secretion except for the presence of a DIDS-sensitive component. Although the identity of the DIDS-sensitive component is unclear, we speculate that it represents a basolateral membrane Na+ -HCO3- cotransporter or an Na+-dependent anion exchanger, which could account for transepithelial HCO3- secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00159.2005 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Hubei General Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
The effect of sexual dimorphism on the metabolism of patients with Parkinson's disease has not been clarified. A group of patients with Parkinson's disease and healthy controls were recruited, and their clinical characteristics and plasma were collected. Untargeted liquid chromatography-mass spectrometry-based plasma metabolomics profiling was performed.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Drug Metabolism and Pharmacokinetics, Laxai Life Sciences Pvt. Ltd, Hyderabad, India.
A highly sensitive and rapid LC-MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!