The aim of this study was to approach the question of neuronal dependence on neurotrophins during embryonic development in mice in a way other than gene targeting. We employed amyogenic mouse embryos and fetuses that develop without any skeletal myoblasts or skeletal muscle and consequently lose motor and proprioceptive neurons. We hypothesized that if, in spite of the complete inability to maintain motor and proprioceptive neurons, the remaining spinal and dorsal root ganglia tissues of amyogenic fetuses still contain any of the neurotrophins, that particular neurotrophin alone is not sufficient for the maintenance of motor and proprioceptive neurons. Moreover, if the remaining spinal and dorsal root ganglia tissues still contain any of the neurotrophins, that particular neurotrophin alone may be sufficient for the maintenance of the remaining neurons (i.e., mostly non-muscle- and a few muscle-innervating neurons). To test the role of the spinal cord and dorsal root ganglia tissues in the maintenance of its neurons, we performed immunohistochemistry employing double-mutant and control tissues and antibodies against neurotrophins and their receptors. Our data suggested that: (a) during the peak of motor neuron cell death, the spinal cord and dorsal root ganglia distribution of neurotrophins was not altered; (b) the distribution of BDNF, NT-4/5, TrkB and TrkC, and not NT-3, was necessary for the maintenance of the spinal cord motor neurons; (c) the distribution of BDNF, NT-4/5 and TrkC, and not NT-3 and Trk B, was necessary for the maintenance of the DRG proprioceptive neurons; (d) NT-3 was responsible for the maintenance of the remaining neurons and glia in the spinal cord and dorsal root ganglia (possibly via TrkB).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2005.07.002DOI Listing

Publication Analysis

Top Keywords

dorsal root
24
root ganglia
24
spinal cord
20
proprioceptive neurons
16
motor proprioceptive
12
ganglia tissues
12
cord dorsal
12
neurons
11
maintenance spinal
8
cord motor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!