Background: Induction of mixed chimerism is currently the most promising concept for clinical tolerance induction; however, the toxicity of the required host conditioning for allogeneic bone marrow transplantation (BMT) should be overcome. Therefore, we explored tolerogenic effectiveness of megadose BMT with anti-CD45RB and anti-CD154 mAb (two-signal blockade) in murine recipients without conditioning.

Materials And Methods: Recipient B6 mice of BALB/c skin allograft received conditioning and an optimal dose (2x10(7) cells) of BMT. For a megadose BMT model, the conditioning was not performed; instead, megadose (2x10(8) cells) of BM was transplanted. The recipients were then treated with anti-CD45RB mAb and anti-CD154 mAb alone or their combination. Flow cytometry was performed to analyze the degree and distribution of donor-derived cells, peripheral deletion of Vbeta5 or Vbeta11 T cells and intrathymic presence of donor MHC class II+ cells. Induction of chimerism-based tolerance to skin allograft was further determined.

Results: High levels ( approximately 23.7%) of mixed and multi-lineage chimerism-based tolerance to skin allograft were induced in the recipients (91%) treated with the optimal-dose BMT and the two-signal blockade. The megadose BMT could replace the recipient conditioning and establish low (approximately 10%) and stable multilineage chimerism. Donor-specific tolerance to skin allograft was induced in these chimeras through clonal deletion of donor-reactive cells.

Conclusions: The megadose BMT with the two-signal blockade could effectively establish mixed and multi-lineage chimerism and induce donor-specific tolerance, suggesting its potential for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2005.07.042DOI Listing

Publication Analysis

Top Keywords

two-signal blockade
16
megadose bmt
16
skin allograft
16
tolerance skin
12
tolerance induction
8
bone marrow
8
marrow transplantation
8
anti-cd154 mab
8
chimerism-based tolerance
8
mixed multi-lineage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!