AFM images were taken of the exterior surface of a single trabecula, extracted from a human femoral head removed during surgery for a hip fracture in an old women with former fractures. The images showed a dense structure of bundled collagen fibrils banded with 67 nm periodicity. Bundles were seen to run in parallel in layers confirming the collagen structure seen by other techniques. Single collagen fibrils were seen to cross the bundles, thus forming cross-links between neighboring bundles of collagen fibrils. Some of these crossing fibrils did not have the 67 nm band pattern and their dimensions were about half compared to the neighboring collagen fibrils. Very little mineral was found on the surface of the trabecula. An AFM image of a fracture plane was also displayed. The trabecula was extracted from a region close to the hip fracture. However, there were in this case no obvious features in the images that could be linked directly to osteoporosis, but altered collagen banding and collagen protrusions may alter mechanical competence. A path to extensive studies of the nanometer scale structure of bone was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2005.06.007DOI Listing

Publication Analysis

Top Keywords

collagen fibrils
16
trabecula extracted
8
hip fracture
8
collagen
7
fibrils
5
atomic force
4
force microscopy
4
microscopy human
4
human trabecular
4
trabecular bone
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Purpose: Using a thin semitendinosus tendon as an autograft is a risk factor for poor clinical outcomes after anterior cruciate ligament reconstruction. Preoperative evaluation of the cross-sectional area of the semitendinosus tendon using magnetic resonance imaging is useful. However, studies comparing the cross-sectional area of the semitendinosus tendon on magnetic resonance imaging and the collagen fibril diameter of the semitendinosus tendon are lacking.

View Article and Find Full Text PDF

We have compared the biomechanical properties of human and porcine corneas using vibrational optical coherence tomography (VOCT). The elastic modulus of the cornea has been previously reported in the literature to vary from about several kPa to more than several GPa based on the results of different techniques. In addition, the formation of corneal cones near the central cornea in keratoconus has been observed in the clinic.

View Article and Find Full Text PDF

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.

View Article and Find Full Text PDF

GraphLOGIC: Lethality prediction of osteogenesis imperfecta on type I collagen by a mechanics-informed graph neural network.

Int J Biol Macromol

December 2024

Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:

Collagen plays a crucial role in human bodies and has a significant presence in connective tissues. As such, the impact of collagen mutations can be devastating. Osteogenesis imperfecta (OI), a rare genetic disease affecting 1 in every 15,000 to 20,000 people, is one such example characterized by brittle bones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!