Introduction: Thrombospondin 1 (TSP1) has the ability to bind to HL-60 cells and to reversibly inhibit human neutrophil elastase (HNE). Human factor V (FV) can be cleaved by HNE thereby providing FV with cofactor activity (FVa(HNE)). Experiments were performed to evaluate the ability of HNE expressed on the surface of HL-60 cells to generate FVa(HNE) to support thrombin generation, and to determine the effect of TSP1 on this reaction.
Results: Western blot analysis showed TSP1 forming a complex with FVa(HNE) within a region corresponding to the heavy chain of FV. Enzymatic reactions were performed to determine the role of TSP1-HNE-FVa(HNE) on the surface of HL-60 cells, namely the assembly of the prothrombinase complex. Thrombin generation was measured by the chromogenic substrate S2238. Exposure of factor V to HL-60 cells prior to the addition of prothrombin and activated factor X provided FV with cofactor activity. HL-60 cells were found capable of synthesizing factor V with cofactor activity, but HL-60 cells failed to synthesize and/or to provide factor X with enzymatic activity. The ability of HL-60 cells to synthesize FV and TSP1 was demonstrated. The addition of exogenous TSP1 enhanced both the rate and amount of thrombin generated on the HL-60 cell surface.
Conclusion: Despite the ability of TSP1 to reversibly inhibit HNE in a purified system, TSP1 expression favors the reactions leading to thrombin generation on the HL-60 cell surface. These observations are relevant to clinical conditions where there is a prothrombotic state such as malignant tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.thromres.2005.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!