Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the past several years, studies from other laboratories, as well as ours, have begun to unravel the mechanism of germ cell movement in the testis by using several in vitro and in vivo models of tight and adherens junction assembly and disassembly, two cellular phenomena that confer cell movement. However, for cell movement to be fully appreciated, the importance of "intracellular" cell movements, such as those involving actin and microtubule filaments, must be better understood. Recent research on Rab GTPases has shown that members of this superfamily function in the trafficking of vesicles containing cargo to distinct subcellular sites such as the plasma membrane while utilizing actin and microtubule filaments as tracks. In this mini-review, we provide an overview of Rab GTPase structure, function, and regulation, while placing added emphasis on the role of Rabs in cell junction dynamics in the testis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.contraception.2005.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!