First isolated and characterized in 1900 by Gulewitsch, carnosine (beta-alanyl-L-hystidine) is a dipeptide commonly present in mammalian tissue, and in particular in skeletal muscle cells; it is responsible for a variety of activities related to the detoxification of the body from free radical species and the by-products of membrane lipids peroxidation, but recent studies have shown that this small molecule also has membrane-protecting activity, proton buffering capacity, formation of complexes with transition metals, and regulation of macrophage function. It has been proposed that carnosine could act as a natural scavenger of dangerous reactive aldehydes from the degradative oxidative pathway of endogenous molecules such as sugars, polyunsaturated fatty acids (PUFAs) and proteins. In particular, it has been recently demonstrated that carnosine is a potent and selective scavenger of alpha,beta-unsaturated aldehydes, typical by-products of membrane lipids peroxidation and considered second messengers of the oxidative stress, and inhibits aldehyde-induced protein-protein and DNA-protein cross-linking in neurodegenerative disorders such as Alzheimer's disease, in cardiovascular ischemic damage, in inflammatory diseases. The research for new and more potent scavengers for HNE and other alpha,beta-unsaturated aldehydes has produced a consistent variety of carnosine analogs, and the present review will resume, through the scientific literature and the international patents, the most recent developments in this field.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867054864796DOI Listing

Publication Analysis

Top Keywords

by-products membrane
8
membrane lipids
8
lipids peroxidation
8
alphabeta-unsaturated aldehydes
8
carnosine
5
carnosine carnosine-related
4
carnosine-related antioxidants
4
antioxidants review
4
review isolated
4
isolated characterized
4

Similar Publications

Neohesperidin Mitigates High-Fat-Diet-Induced Colitis In Vivo by Modulating Gut Microbiota and Enhancing SCFAs Synthesis.

Int J Mol Sci

January 2025

National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China.

Previous research has consistently shown that high-fat diet (HFD) consumption can lead to the development of colonic inflammation. Neohesperidin (NHP), a naturally occurring flavanone glycoside in citrus fruits, has anti-inflammatory properties. However, the efficacy and mechanism of NHP in countering prolonged HFD-induced inflammation remains unclear.

View Article and Find Full Text PDF

LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices.

J Pharm Biomed Anal

January 2025

Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy. Electronic address:

Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease.

View Article and Find Full Text PDF

We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost.

View Article and Find Full Text PDF

Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern.

View Article and Find Full Text PDF

Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!