A coordinatively induced length control of W18O49 nanorods has been developed using thermal decomposition of W(CO)6 in octyl ether solutions of single or mixed capping agents, oleic acid (OA), oleic acid/hexadecylamine (HDA), and oleic acid/trioctylphosphine oxide (TOPO). The order of length for nanorods synthesized with different capping agents was OA > OA/HDA > OA/TOPO, which was the opposite of order of their coordinating power. The order of crystalline size (diameter x length) from the TEM image was OA/HDA > OA > OA/TOPO and matched exactly with the order of crystallinity from the XRD pattern. The order of photoluminescence intensity was OA/HDA < OA < OA/TOPO and was the opposite of the order for the crystalline size or crystallinity. The strong coordinating power and steric bulkiness of TOPO is thought to interrupt the growth of the nanorods, the rearrangement of the end face atoms, and the fusion of the lateral faces and, thereby, increase the oxygen defects and the photoluminescence intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0504644 | DOI Listing |
Inorg Chem
October 2005
Nano-Materials Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul.
A coordinatively induced length control of W18O49 nanorods has been developed using thermal decomposition of W(CO)6 in octyl ether solutions of single or mixed capping agents, oleic acid (OA), oleic acid/hexadecylamine (HDA), and oleic acid/trioctylphosphine oxide (TOPO). The order of length for nanorods synthesized with different capping agents was OA > OA/HDA > OA/TOPO, which was the opposite of order of their coordinating power. The order of crystalline size (diameter x length) from the TEM image was OA/HDA > OA > OA/TOPO and matched exactly with the order of crystallinity from the XRD pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!