Based on the successive underwater irradiance measurement in situ from Jul. 12 to 17 in 2003, the attenuation of photosynthetically available radiation (PAR) and euphotic depth in Meiliang Bay were analyzed under different winds and waves. The results showed that the downward PAR attenuation coefficients ranged from 2.63 to 4.7 m(-1), with an average of 3.63 +/- 0.47 x m(-1), and the corresponding euphotic depth ranged from 0.98 to 1.75 m, with an average of 1.29 +/- 0.18 m, which demonstrated that phytoplankton and macrophyte could not grow below 1.5 m due to the lack of adequate solar radiation. The total suspended solids resulted from wind and wave increased the attenuation of light, with the downward attenuation coefficients of PAR being 2.63, 3.72 and 4.37 x m(-1) under small, medium and large wind and wave, respectively. Significant linear correlations were found between transparence, PAR attenuation coefficient, euphotic depth and total suspended solid, especially inorganic suspended solid, while chlorophyll a was the most nonsignificant light attenuator. Multiple stepwise linear regressions showed that inorganic suspended solid was the most important light attenuator dominating the light attenuation in wind-exposed Meiliang Bay.
Download full-text PDF |
Source |
---|
J Environ Manage
November 2024
State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China.
Using dredged sediment as plant growth substrates is a promising way to deal with large amounts of excavated sediments. However, it is a big challenge to deal with various pollutants in sediments, among which microcystins (MCs) gained limited attention. In this study, sediments collected from Lake Taihu were mixed with agricultural soil at a 1:1 ratio to create various growing substrates for lettuce (Lactuca sativa L.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
The impact of elevated CO levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location.
View Article and Find Full Text PDFChemosphere
October 2024
National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, PR China. Electronic address:
In order to clarify the nitrogen (N) and phosphorus (P) regeneration patterns and internal mechanism for initiating and maintaining algal blooms in Lake Taihu, samples (including surface water and sediment) from 8 sites in Lake Taihu were collected for nine times from May 2010 to April 2011, and analyzed for total and labile organic matter, P fractionation and sorption behaviors, extracellular enzymatic activities (EEA), dehydrogenase activity, the respiratory electron transport system activity, and iron in sediment, EEA, N and P species and chlorophyll a (Chl. a) in surface water, as well as N and P species in interstitial water. In Lake Taihu, although severe blooms occurred in both Meiliang Bay and Zhushan Bay, the nutrient regeneration patterns stimulating the initiation and maintenance of algae blooms in these two bays were different.
View Article and Find Full Text PDFChemosphere
March 2024
State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:
Microbes may induce endogenous phosphorus (P) migration from lacustrine sediment. This study focused on the role of phosphate-solubilizing bacteria (PSB) disturbance in affecting the sediment P release and further contributing to cyanobacterial recruitment in Meiliang Bay, Lake Taihu. Gluconic acid was the main mechanism of phosphate solubilizing by PSB.
View Article and Find Full Text PDFJ Hazard Mater
March 2024
School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
This study monitored 20 organophosphate esters (OPEs) in water and sediment from three typical mariculture bases (Yunxi Marine Ranching (YX), Hangzhou Bay (HZB), and Zhelin Bay (ZLB)) and Meiliang Bay (MLB) of Taihu Lake in China, focusing on the spatial distribution and sources of OPEs. Moreover, the occurrence and risk of OPEs in fishes from ZLB were evaluated. The ∑OPE concentrations in waters followed the order MLB (591 ng/L) > YX (102 ng/L) > HZB (70.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!