AI Article Synopsis

  • Pancreatic islet transplantation faces challenges due to a lack of available donor organs, but using encapsulated insulinoma cells could provide a solution by being glucose-responsive.
  • Researchers transplanted encapsulated MIN-6 cells into the spleens of diabetic rats, resulting in significantly reduced blood glucose levels and improved insulin production over eight weeks.
  • This method shows promise as it avoids the need for immunosuppression and allows for direct insulin delivery to the liver, effectively reversing diabetes in the test subjects.

Article Abstract

Pancreatic islet transplantation is limited by shortage of donor organs. Although beta-cell lines could be used, their secretion of insulin is characteristically glucose independent and immunoisolation is required. Here we show that intrasplenic transplantation of encapsulated glucose-responsive mouse insulinoma cells reversed streptozotocin (STZ)-induced diabetes in rats. MIN-6 cells derived from a transgenic mouse expressing SV 40 large T antigen in pancreatic beta-cells were transfected with minigene encoding for human glucagon-like-peptide-1 under the control of rat insulin promoter. The cells were encapsulated in alginate/poly-L-lysine and used for cell transplantation in STZ-diabetic rats. Rats with nonfasting blood glucose (n-FBG) greater than 350 mg/dl were used. In group I rats (n=6) 20 million encapsulated cells were injected into the spleen. Group II rats (n=6) received empty capsules. n-FBG was measured biweekly. After 4 and 8 weeks, an intraperitoneal glucose tolerance test (IPGTT) was performed in group I; normal rats served as controls. Plasma insulin level was measured every other week (RIA). After 8 weeks, spleens were removed 1 day before sacrifice. In rats transplanted with cells the n-FBG was 100-150 mg/dl until the end of the study. After splenectomy, all cell recipients became diabetic (glucose 400 +/- 20 mg/dl). Transplanted rats showed increase in body weight and insulin production (3.3 +/- 1.0 ng/ml versus 0.92 +/- 0.3 ng/ml; p < 0.01) and had normal IPGTT. Spleens contained capsules with insulin-positive cells. Overall, data from this work indicate that intrasplenic transplantation of xenogeneic encapsulated insulin-producing cells without immunosuppression reversed diabetes in rats. Excellent survival and function of the transplanted cells was due to the fact that the cells were separated from the bloodstream by the immunoisolatory membrane only and insulin was delivered directly to the liver (i.e., in a physiological manner).

Download full-text PDF

Source
http://dx.doi.org/10.3727/000000005783982990DOI Listing

Publication Analysis

Top Keywords

intrasplenic transplantation
12
diabetes rats
12
cells
10
rats
10
transplantation encapsulated
8
mouse insulinoma
8
insulinoma cells
8
group rats
8
rats n=6
8
transplanted cells
8

Similar Publications

Metastasis to the liver is a leading cause of death in patients with colorectal cancer. To investigate the characteristics of cancer cells prone to metastasis, we utilized an isogenic model of BALB/c and colon tumor 26 (C26) cells carrying an active KRAS mutation. Liver metastatic (LM) 1 cells were isolated from mice following intrasplenic transplantation of C26 cells.

View Article and Find Full Text PDF

Circadian system disorder induced by aberrantly activated EFNB2-EPHB2 axis leads to facilitated liver metastasis in gastric cancer.

Cell Oncol (Dordr)

September 2024

Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.

Background: Liver is one of the most preferred destinations for distant metastasis of gastric cancer (GC) and liver metastasis usually predicts poor prognosis. The achievement of liver metastasis requires continued cross-talk of complex members in tumor microenvironment (TME) including tumor associated macrophages (TAMs).

Methods: Results from 35 cases of ex vivo cultured living tissues of GC liver metastasis have elucidated that circadian rhythm disorder (CRD) of key molecules involved in circadian timing system (CTS) facilitates niche outgrowth.

View Article and Find Full Text PDF

Modeling HBV Infection and Therapy in Immunodeficient NOD-Rag1-/-IL2RgammaC-null (NRG) Fumarylacetoacetate Hydrolase (FAH) Knockout Mice with Human Chimeric Liver.

Methods Mol Biol

July 2024

Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.

Chimeric mouse models with a humanized liver (Hu-HEP mice) provide a unique tool to study human hepatotropic virus diseases, including viral infection, viral pathogenesis, and anti-viral therapy. Here, we describe a detailed protocol for studying hepatitis B infection in NRG-derived fumarylacetoacetate hydrolase (FAH) knockout mice repopulated with human hepatocytes (FRG-Hu HEP mice). The procedures include (1) maintenance and genotyping of the FRG mice, (2) intrasplenic injection of primary human hepatocytes (PHH), (3) 2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) drug reduction cycling to improve human hepatocyte repopulation, (4) human albumin detection, and (5) HBV infection and detection.

View Article and Find Full Text PDF

Potential role of stem cells from human exfoliated deciduous teeth in inducing liver regeneration.

J Gastroenterol Hepatol

October 2024

Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Background And Aim: Even with advancement of medical technologies, liver transplantation still faces several major challenges. Hence, other treatment modalities are urgently needed for patients with end-stage liver disease. Stem cells from human exfoliated deciduous teeth (SHED) was discovered to have highly proliferative and pluripotent properties; including differentiation into hepatocyte-like cells.

View Article and Find Full Text PDF

In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!